Abstract:
A system provides dynamic interference avoidance in integrated multi-radio access technology (RAT) heterogeneous networks (Het-Nets). A multi-mode user equipment accesses mobile communications services using RATs. An integrated node provides a primary cell and at least one secondary cell to the multi-mode user equipment. Initial radio access technologies (RATs) are assigned to the multi-mode user equipment from among a plurality of RATs for use by the multi-mode user equipment. Quality metrics are collected across the plurality of RATs. RAT assignments are re-evaluated based on the collected quality metrics. To provide dynamic interference mitigation in multi-RAT Het-Nets, RAT assignments are periodically repartitioned from among the plurality of RATs for use by the multi-mode user equipment based on the re-evaluation of RAT assignments using the collected quality metrics.
Abstract:
The method (600) involves receiving a configuration of discontinuous reception (610) that is levelled with a multi-radio wireless device e.g. cell phone, from an evolved node B. The wireless device is arranged with a set of radio operated transmitter-receivers. The configuration of discontinuous reception is applied (620) to one of the set of radio operated transmitter-receivers. A shift period is selected (630) among a cycle of 2 milliseconds (ms), 5ms, and 8ms for long discontinuous reception cycle. Independent claims are also included for the following: (1) a multi-radio wireless device (2) a computer readable medium comprising instructions for performing an interference reduction method.
Abstract:
An evolved Node B (eNB) and method for coherent coordinated multipoint transmission with per CSI-RS feedback are generally described herein. The eNB may configure a first cooperating point and a second cooperating point to jointly transmit a multi-node channel-state information (CSI) reference signal (RS) (CSI-RS) in predetermined resource elements of a resource block. The eNB may receive CSI reports as feedback from user equipment (UE). The CSI reports may include a precoding matrix indicator (PMI) indicating relative phase information between the cooperating points based on the multi-node CSI-RS. The CSI reports for the multi-node CSI-RS may be restricted to a PMI of rank-1. The eNB may configure the cooperating points for a coherent joint transmission to the UE based at least on the relative phase information. The coherent joint transmission may also be jointly beamformed based on single-node PMIs.
Abstract:
A method for a wireless communication network is presented. In one embodiment, the method includes receiving, by a base station, information about one or more interfering base stations with respect to a communication channel used by a mobile station. The method includes sending silence requests to an interfering base station to reduce interference from that interfering base station with respect to the communication channel. The method further includes establishing communication with the mobile station via the communication channel.
Abstract:
Various systems and methods for providing opportunistic placement of compute in an edge network are described herein. A node in an edge network may be configured to access a service level agreement related to a workload, the workload to be orchestrated for a user equipment by the node; modify a machine learning model based on the service level agreement; implement the machine learning model to identify resource requirements to execute the workload in a manner to satisfy the service level agreement; initiate resource assignments from a resource provider, the resource assignments to satisfy the resource requirements; construct a resource hierarchy from the resource assignments; initiate execution of the workload using resources from the resource hierarchy; and monitor and adapt execution of the workload based on the resource hierarchy in response to the execution of the workload.
Abstract:
According to various examples, a communication system is described comprising a receiver configured to receive, for each of a plurality of object classes, via a wireless communication channel shared among transmitters of a respective set of transmitters, a superposition of transmitted hyperdimensional code words, comprising, for each transmitter of the respective set of transmitters, a hyperdimensional code word transmitted via the wireless communication channel and encoding data of an object of the object class acquired by the transmitter, a memory configured to store, for each of the plurality of object classes, the received superposition in association with the class, a processor configured to classify a hyperdimensional code word representing an object to be classified by correlating the hyperdimensional code word with each stored superposition and to generate a classification result corresponding to the object class associated with a superposition fulfilling a predetermined criterion based on correlation results.
Abstract:
System and techniques for information centric network (ICN) protocol for federated learning are described herein. An interest packet may be received on a first interface to start a federated learning round. Here, the interest packet includes a participant criterion and a federated learning round expiration. An entry, that includes the federated learning round expiration, is created in a pending interest table (PIT) for the interest packet. The interest packet is forwarded, in accordance with a forwarding information base (FIB), to a set of interfaces before the federated learning round expiration. When a data packet from a node, that meeting the participant criterion, is received in response to the interest packet, the data packet is forwarded on the first interface in accordance with the PIT entry.
Abstract:
System and techniques for information centric network (ICN) mobility management are described herein. A packet may be received, at a first network node positioned between a subscriber and a publisher of an ICN, for a second network node. Movement metrics for the second network node may also be received. The packet may then be transmitted to a third network node-selected from a plurality of network nodes based on the movement metrics-for delivery to the second network node.