Abstract:
A portable UV detection apparatus is disclosed. In one embodiment, the UV detection apparatus includes a UV detection device integrated with a skin type measuring device. A controller can be included in the apparatus that is in communication with the skin type measuring device and the UV detection device. The controller can provide information to the user regarding the amount of ultraviolet radiation present in the environment. In an alternative embodiment, the UV detection apparatus includes a UV detection device in conjunction with a light sensor. The light sensor can be configured to activate the UV detection device should light at a particular intensity be present in the environment. The UV detection device as described above can be configured to measure UVA radiation, UVB radiation, and/or UVC radiation.
Abstract:
A method and apparatus for measuring bandwidth of light emitted from a laser is disclosed which may comprise: a first and second wavelength sensitive optical bandwidth detectors providing, respectively, an output representative of a first parameter indicative of the bandwidth of the emitted light as measured respectively by the first and second bandwidth detectors, and an actual bandwidth calculation apparatus adapted to utilize these two outputs as part of a multivariable linear equation employing predetermined calibration variables specific to either the first or the second bandwidth detector, to calculate a first actual bandwidth parameter or a second actual bandwidth parameter. The first actual bandwidth parameter may be a spectrum full width at some percent of the maximum ("FWXM"), and the second actual bandwidth parameter may be a portion containing some percentage of the energy ("EX"). The first and second bandwidth detectors may an etalon and the outputs may be representative of a fringe width of a fringe of an optical output of the respective etalon at FWXM. The precomputed calibration variables may be derived from respective three dimensional plots representing, respectively, detector outputs in relation to a calibrating input light with known values of the first and second actual bandwidth parameters, which may be FWXM and EX. The first/second three dimensional plot may provide a solution: (first/second output) = (a/d * (calibrating input light known value of FWXM)) + (b/e* (calibrating input light known value of EX) +c/f; and the actual bandwidth calculation apparatus may use the derived equation: (first actual bandwidth parameter) = ((b * (second output)) -(e * (first output)) + ce - bf) / (bd - ae), or the equation: (second actual bandwidth parameter) = ((a * (second output)) - (d * (first output)) + cd - af) / (ae - bd). FWXM may be FWHM and EX may be E95. The transfer function of the first optical bandwidth detector may be selected to be much more sensitive to FWXM than to EX and the transfer function of the second optical bandwidth detector may be selected to be much more sensitive to EX than to FWXM.
Abstract:
A position and colour detection sensor (for detecting a position of a light spot in a light distribution that can include stray light components, e.g. from other lasers, ambient lighting etc.) includes two discrete response position sensitive detectors (DRPSDs). The first DRPSD is used to calculate a raw estimate of the spot position and the second DRPSD is used to calculate the actual spot position based on information from the first DRPSD. Colour is supported by further dividing each pixel of the first DRPSD into elementary photocells, each one covered with an appropriate optical filter. The use of two DRPSDs differing in pixel geometries makes them suitable for integration on the same chip using the same process. This reduces production and alignment costs. Further, analogue microelectronic processes can be used for colour filter deposition and simple optics can be used for beam splitting and shaping.
Abstract:
Bisher wurde die ausgesendete Lichtleistung einer Sendediode, im einfachsten Fall deren Betrieb überhaupt, nicht oder nur durch an äußeren Abdeckungen reflektierte Lichtanteile gemessen bzw. aus dem Flußstrom abgeleitet. Diese Verfahren sind jedoch recht ungenau und stark störanfällig. Indem bei Überwachungseinheiten mit einer Mehrzahl von Sendedioden in der Sendeeinheit nur die zu messende Sendediode Licht emittiert, eine andere der Sendedioden jedoch als Empfänger für das auftretende Übersprechen genutzt und dieses als zur Lichtleistung proportionales Signal ausgewertet wird, kann eine höhere Genauigkeit und Sicherheit gewonnen werden. Dafür bietet sich eine Schaltungsordnung an, bei der jeweils zwei Sendedioden paarweise parallel gleichgepolt in einem Knoten zusammengeschaltet werden und diese wechselseitig entweder als aktive Sendediode mit einer Stromquelle oder als Empfänger mit einem Spannungsabgriff über einem Arbeitswiderstand verbunden werden.
Abstract:
Solarelement (1) mit mindestens Fläche (2), die eine Receiverfläche und eine Receiverebene (R) definiert, einem Sensor (4) für Solarstrahlung mit einer Sensorebene (S), wobei der Sensor (4) neben oder unterhalb der Fläche (2) angeordnet ist, und mit einem Messsystem (5) zur Bestimmung einer Zustandsänderung des Sensors (4) für Solarstrahlung, wobei der Sensor (4) mit der Sensorebene (S) parallel oder in einem Winkel von maximal 10° zu der Receiverebene (R) oder in der Receiverebene (R) angeordnet ist, wobei das Messsystem (5) mindestens eine Strahlungsvorrichtung (6) und eine Auswertevorrichtung aufweist, wobei die Strahlungsvorrichtung (6) eine elektromagnetische Strahlung emittierende Strahlungsquelle aufweist, wobei die elektromagnetische Strahlung entlang einer optischen Achse (A) emittiert wird und auf den Sensor (4) gerichtet ist, wobei die Auswertevorrichtung die mindestens eine Strahlungsquelle ansteuert, mindestens einen Messwert des Sensors (4) erfasst und die Zustandsänderung des Sensors (4) durch einen Vergleich des mindestens einen erfassten Messwertes mit mindestens einem zuvor ermittelten Messwert bestimmt, und wobei die Strahlungsvorrichtung (6) unterhalb einer Ebene (9) angeordnet ist, die durch eine Oberkante (4a) des Sensors (4) verläuft und in einem Winkel α≤10° zur Horizontalen in Richtung des Sensors (4) geneigt ist.
Abstract:
A safety control system comprises: a first control unit 12 arranged to control a controlled system 10, a second control unit 20 arranged to detect a fault with the controlled system and arranged to transmit messages wirelessly to the first control unit, wherein the second control unit 20 comprises: a first controller 24a and a second controller 24b, each of said first and second controllers being arranged to detect a condition of the controlled system 10 and output messages indicative of whether or not the condition has been detected; a transmitter 32 arranged to transmit wirelessly to the first control unit 12; and a multiplexer 30 arranged to connect each of the first and second controllers in turn to the transmitter so that messages from each of the first and second controllers can be transmitted to the first control unit.
Abstract:
Techniques are disclosed for maintaining consistent lumen output of a lighting assembly over time. By maintaining a consistent lumen output, it is possible to maintain acceptable color stability where color mixing of multiple outputs is used. The lighting assembly may be any lighting configuration that might suffer from lumen depreciation and/or color drift over time, and may include any type(s) of light source(s) that may be monitored and driven accordingly. The lighting assembly, in addition to light source(s), includes a photo detector and a directed light source, such as a laser. The directed light source provides a golden sample for use in calibrating the photo detector, which in turn monitors lumen output of the light source(s). Drive signals are adjusted to account for lumen depreciation of the monitored light source(s).
Abstract:
An electronic device includes a display unit, and an operation unit. The electronic device has a lock function of locking operation functions on the operation unit such that the operation functions are temporarily inoperable. At least one of the operation functions is set to be selectively operable even in a lock state.