Abstract:
The present disclosure relates to assistive mechanisms and methods that aid an operator of a spectrometer to make spectral measurements of a sample, the measurements having a desired quality. The method enables quality spectral measurements quickly and simply, without a prior understanding of a sample's spectrum or of the details as to how the spectrum is measured. Data quality is improved, and the time required to collect the data is reduced. While a specific example of sample optic focus is disclosed in detail, the optimization of numerous other parameters is possible.
Abstract:
The invention concerns an optical micro-spectrometry system comprising an optical microscope (10), a spectrometry system (50) and an optical system (14) adapted to direct an excitation light beam on the sample through said at least one microscope objective (11, 12) and to collect a Raman or PL light beam from a sample. According to the invention, the optical micro-spectrometry system comprises an imaging system (16, 41) configured for acquiring a first image (71) and a second image (72) of the sample, by reflection or transmission of an illumination beam from a sample surface, the first image (71) having a large field of view and the second image (72) having a small field of view, a processing system (40) configured for determining an area in the first image (71) corresponding to the second image (72), a display system (44) configured for displaying the first image (71), the second image (72), and a third image (73) representing said area in overlay on the first image (71).
Abstract:
A method of controlling a spectroscopic module that includes a measurement light source, a variable-wavelength optical filter, a photodiode, and a conversion circuit for converting a drive signal voltage into a gap displacement amount. The spectroscopic module has a reference light source for emitting a reference light beam of a known wavelength. The controlling method involves varying a gap for the incident reference light beam, extracting two maximum points among data output from the photodiode, and updating a first conversion formula provided in the conversion circuit through use of drive signal voltages and gap amounts corresponding to the two points.
Abstract:
An optical module includes a stationary substrate (51), a movable substrate (52), a stationary reflecting film (54) provided to the stationary substrate, a movable reflecting film (55) provided to the movable substrate and opposed to the stationary reflecting film, a first control electrode (571) disposed outside the stationary reflecting film in a filter plan view, a second control electrode (572) disposed outside the movable reflecting film in the filter plan view, and opposed to the first control electrode, and a tilt control section (152) adapted to make a first control current flow through the first control electrode, and make a second control current, which has an opposite direction to the first control current in the filter plan view, flow through the second control electrode.
Abstract:
In this color measurement device and method, an entire image and a partial image of a color chart are acquired, respectively, during conveyance of the color chart by a conveyance unit and during re-conveyance of the color chart by the conveyance unit, and an amount of positional deviation of the color chart occurring between the conveyance and the re-conveyance is derived based on the acquired entire and partial images. Then, a color of each of a plurality of patches of the color chart is measured by a color measuring unit, while a measurement position of the color measuring unit is corrected according to the derived positional deviation amount.
Abstract:
A protective sheath having a closed end and an open end is sized to receive a hand held spectrometer. The spectrometer can be placed in the sheath to calibrate the spectrometer and to measure samples. In a calibration orientation, an optical head of the spectrometer can be oriented toward the closed end of the sheath where a calibration material is located. In a measurement orientation, the optical head of the spectrometer can be oriented toward the open end of the sheath in order to measure a sample. To change the orientation, the spectrometer can be removed from the sheath container and placed in the sheath container with the calibration orientation or the measurement orientation. Accessory container covers can be provided and placed on the open end of the sheath with samples placed therein in order to provide improved measurements.
Abstract:
The bandwidth selection mechanism includes a first actuator mounted on a second face of a dispersive optical element, the second face being opposite from a reflective face, the first actuator having a first end coupled to a first end block and a second end coupled to a second end block, the first actuator being operative to apply equal and opposite forces to the first end block and the second end block to bend the body of the dispersive optical element along the longitudinal axis of the body and in a first direction normal to the reflective face of the dispersive optical element. The bandwidth selection mechanism also includes a second actuator being operative to apply equal and opposite forces to bend the body along the longitudinal axis of the body, in a second direction perpendicular to the reflective face of the dispersive optical element.
Abstract:
A displacement sensor includes a light source unit configured to apply light with different plural wavelengths in a direction oblique to a measurement region of a planar measured object, a spectroscope configured to measure spectral distribution of light reflected by the measurement region, a feature amount extracting module configured to extract a feature amount of the spectral distribution, and a displacement calculating module configured to calculate displacement of the measurement region based on the extracted feature amount and a relation between displacement and a feature amount acquired previously.
Abstract:
At least one light source is configured to emit at least one beam into a sample volume of an absorbing medium. In addition, at least one detector is positioned to detect at least a portion of the beam emitted by the at least one light source. Further, at least one beam modification element is positioned between the at least one detector and the at least one light source to selectively change at least one of (i) a power intensity of, or (ii) a shape of the beam emitted by the at least one light source as detected by the at least one detector. A control circuit is coupled to the beam modification element. Related apparatus methods, articles of manufacture, systems, and the like are described.