摘要:
The invention provides agents that target carbonic anhydrase, which can be used as imaging agents or therapeutic agents. The agents can be used to image tumor hypoxia as well as other physiological processes in a subject.
摘要:
The invention relates to a combined x-ray and optical (light-based) tomographic imaging system that provides functional information at greater resolution than can be achieved by optical tomography alone. The system is configured with one or more x-ray sources, x-ray detectors, light sources, and light detectors arranged on a gantry which rotates about an imaging chamber containing the object to be imaged. The system thereby allows both x-ray radiation and light to be directed into the object at multiple locations. Processing methods of the invention go beyond simple co-registration of images obtained from two or more imaging techniques. Both x-ray data and light data are used together in optical tomographic reconstruction to create the tomographic image, thereby allowing a more accurate and/or higher resolution final image.
摘要:
Provided is a family of intramolecularly quenched imaging agents for use in both in vivo and in vitro imaging that contain at least one enzymatically cleavable oligopeptide and two fluorophores or a fluorophore and a quencher. When subjected to proteolytic cleavage, at least one fluorophore is unquenched and becomes capable of producing a fluorescent signal upon excitation with light of an appropriate wavelength. Also provided are in vivo and in vitro imaging methods using such imaging agents.
摘要:
The invention relates to a combined x-ray and optical (light-based) tomographic imaging system that provides functional information at greater resolution than can be achieved by optical tomography alone. The system is configured with one or more x-ray sources, x-ray detectors, light sources, and light detectors arranged on a gantry which rotates about an imaging chamber containing the object to be imaged. The system thereby allows both x-ray radiation and light to be directed into the object at multiple locations. Processing methods of the invention go beyond simple co-registration of images obtained from two or more imaging techniques. Both x-ray data and light data are used together in optical tomographic reconstruction to create the tomographic image, thereby allowing a more accurate and/or higher resolution final image.
摘要:
This invention relates to new fluorescent chemical entities, especially fluorescent molecules that comprise biocompatible N,N-disubstituted sulfonamide fluorochromes. This invention also relates to the corresponding reactive versions of such molecules. This invention also relates to the corresponding conjugates with moieties such as peptides, proteins, various biomolecules, carbocyclic and heterocyclic compounds, sugars, and their uses thereof.
摘要:
The present invention is directed to fluorescent dyes and its valence tautomers of formula (I), wherein Q represents a conjugated moiety that increases the fluorescent quantum yield of the compound; R1 is a functionalized group of the formula -(CH2)jY, wherein Y is selected from the group consisting of SO3H, COOH, NH2, CHO, NCS, epoxy, phthalimido, and COOZ, wherein Z represents a leaving group; R2 is a functionalized group of the formula -(CH2)kY', wherein Y' is selected from the group consisting of SO3H, COOH, NH2, CHO, NCS, epoxy, phthalimido, and COOZ, wherein Z represents a leaving group; M is a counterion selected from the group consisting of ammonium, alkali metal cations, and alkaline earth metal cations; n = 1 to 4; m = 1 to 4; j = 2 to 10; and k = 2 to 10.
摘要:
Amine functionalized magnetic nanoparticle compositions and processes for synthesizing the same are described. The process consists of obtaining a carboxylated polymer in substantially pure form, which is used to prepare a substantially size homogeneous, polymer coated carboxyl, functionalized magnetic nanoparticle. The carboxyl groups are converted to reactive primary amino groups by the use of a water-soluble carbodiimide followed by reaction of a large excess of a diamine. The amine-terminated nanoparticles are then reacted with bifunctional crosslinking agents and with various biomolecules to make nanoparticles for in vitro assays, cell sorting applications and target specific MR contrast agents.