Abstract:
The invention relates to a method for producing acrylic acid by the heterogeneously catalysed gas-phase oxidation of propane on a multi-metal oxide mass, said mass containing the elements Mo, V, Te and/or Sb and having a specific X-ray diffractogram.
Abstract:
The present invention relates to a mixture comprising at least one plastic K and 0.1 to 50% by weight, relative to the entire mixture, of at least one compound A, selected from the group consisting of borophosphates, borate phosphates, and metal borophosphates and mixtures thereof, to a method for producing said mixture, and to the use of said mixture as a flame proofing agent.
Abstract:
The invention relates to a catalyst for partially oxidizing hydrocarbons in the gas phase, containing a multi-metal oxide of the general formula (I), Ag a MO b V c M d O e * f H 2 O (I), wherein M stands for at least one element selected from among Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba, B, AI, Ga, In, Si, Sn, Pb, P, Sb, Bi, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Au, Zn, Cd, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and U, a has a value of 0.5 to 1.5, b has a value of 0.5 to 1.5, c has a value of 0.5 to 1.5, a+b+c has the value 3, d has a value of less than 1, e means a number that is determined by the valence and frequency of the elements other than oxygen in the formula (I), f has a value of 0 to 20, which multi-metal oxide exists in a crystal structure, the X-ray powder diffractogram of which is characterized by diffraction reflections at a minimum of 5 lattice distances selected from among d = 4.53, 3.38, 3.32, 3.23, 2.88, 2.57, 2.39, 2.26, 1.83, 1.77 Å (± 0.04 Å).
Abstract:
The invention relates to a method for separating at least one first material from a mixture containing said at least one first material and at least one second material. Said method comprises the following steps: (A) a suspension of the mixture containing at least one first material and at least one second material and at least one magnetic particle is produced in a suitable suspending agent; (B) the pH of the suspension obtained in step (A) is adjusted to a value at which the at least one first material and the at least one magnetic particle have opposite surface charges such that the same agglomerate; (C) the agglomerate obtained in step (B) is separated by applying a magnetic field; and (D) the agglomerate separated in step (C) is split by adjusting the pH to a value at which the at least one first material and the at least one magnetic particle have identical surface charges in order to obtain the at least one first material.
Abstract:
Dispersions comprising functionalized metal oxide particles, polymerizable compounds and optionally a solvent, and the use thereof for stabilizing polymers.