Abstract:
Proposed is a separation method in a toluene to dinitrotoluene process, wherein said method with a first process step comprising feeding a toluene comprising first stream (1) and a nitric acid comprising second stream (2) into a first reactor (R1), reacting of the toluene comprising first stream (1) and the nitric acid comprising second stream (2) within the first reactor (R1) to a first reaction mixture (3), said first reaction mixture (3) comprising a first liquid/liquid mixed phase of an acid phase and an organic phase comprising mononitrotoluene, feeding the first reaction mixture (3) into a first separation device (S1), separating the first reaction mixture (3) within the first separation device (S1) into a first forward stream (4) having a flow direction to a second process step and a first backward stream (5) having a flow direction back to the first reactor (R1), said method having a second process step comprising feeding the first forward stream (4) into a second reactor (R2), feeding a nitric acid comprising third stream (6) and a sulfuric acid comprising fourth stream (7) into the second reactor (R2), reacting of the first forward stream (4), the nitric acid comprising third stream (6) and the sulfuric acid comprising fourth stream (7) within the second reactor (R2) to a second reaction mixture (8), said second reaction mixture (8) comprising a second liquid/liquid mixed acid phase and an organic phase comprising mononitrotoluene and dinitrotoluene, feeding the second reaction mixture (8) into a second separation device (S2), separating the second reaction mixture (8) within the second separation device (S2) into a second forward stream (9) having a flow direction to a process output and a second backward stream (10) having a flow direction back to the first reactor (R1), wherein fine separating of at least one of the streams (4, 5, 9,10) after the first separation step (S1) and/or the second separation step (S2) in a coalescer is carried out.
Abstract:
The invention relates to a method for purifying crude aromatic nitro compounds produced by the nitration of aromatic compounds, said method comprising performing the following washing stage (a) one or more times: (a) bringing the crude aromatic nitro compound (N-ein) into contact with an aqueous phase (W-res) and subsequent phase separation, maintaining an organic phase (N-res) and an aqueous phase (W-res), at least one demulgator (D) being present in one or more of the washing stages (a).
Abstract:
The invention relates to a method for producing toluylenediamine by hydrogenating dinitrotoluene with hydrogen in the presence of a suspended catalyst in a vertically upright reactor (1), at the upper end of which a propulsion jet nozzle (2) is arranged, through which the reaction mixture drawn from the reactor sump is injected into the upper area of the reactor (1) through an external loop, the reaction mixture then flowing into a central insertion pipe (4), which is arranged in the longitudinal direction of the reactor, flowing through said insertion pipe from top to bottom and flowing upward again in an internal loop movement outside of the insertion pipe (4), having a heat exchanger (6) in the interior space of the reactor (1), through which cooling water flows, and in the process absorbs part of the reaction heat, the dinitrotoluene being fed at the upper end of the reactor (1) and the hydrogen being fed at the lower end of the reactor (1), and in addition to the heat exchanger (6) arranged in the interior space of the reactor (1), another heat exchanger (W) being inserted in the external loop, water absorbing the remaining reaction heat through indirect heat exchange with the reaction mixture, characterized in that the reaction heat is used to produce steam at an overpressure of at least 4 bar in that the hydrogenation of dinitrotoluene into toluylenediamine is performed at a temperature > 180°C.
Abstract:
A method for production of a catalyst for gas phase oxidations is disclosed, whereby a suspension of Ti02 and V205 particles is applied to a fluidised inert support, wherein at least 90 vol. % of the V205 particles have a diameter of 20 μm or less and at least 95 vol. % of the V205 particles have a diameter of 30 μm or less. The defined particle size distribution of the V205 permits a high coating efficiency.
Abstract:
The invention relates to a method for producing aromatic amines by the catalytic hydration of the corresponding nitro compounds, particularly for producing toluylenediamine by the hydration of dinitrotoluene, characterized in that hydration catalysts are employed, in which a mixture of nickel, palladium and an addition element, selected from the group containing cobalt, iron, vanadium, manganese, chromium, platinum, iridium, gold, bismuth, molybdenum, selenium, tellurium, stannous, and antimony, is present as the active component on a carrier.
Abstract:
The invention relates to a method for start-up of oxidation catalysts, characterised in that the catalyst is started up at a temperature of 360 °C to 400 °C, with an air supply of 1.0 to 3.5 Nm3/h and a hydrocarbon loading of 20 to 65 g/Nm3 with formation of a hot spot in the first 7 to 20 % of the catalyst bed at a temperature of 390 °C to less than 450 °C.