Abstract:
The invention relates to a catalyst and a method for condensing alcohols in the gas phase by means of a Guerbet reaction. The catalyst according to the invention is preferably used in a method for producing butanol by condensing ethanol. The catalyst comprises a carrier material composed of thermally partially or completely decomposed compounds similar to hydrotalcite, preferably hydrotalcite, in contact with iridium and/or ruthenium as a promoter, wherein the content of iridium and/or ruthenium is in the range of 0.05 to 4 wt%, preferably 0.1 to 3.5 wt%, and especially preferably 0.2 to 3.0 wt%, and the average size of the promoter particles is
Abstract:
A catalyst for the reforming of hydrocarbon-comprising compounds with CO 2 , water and/or hydrogen, a process for producing the same, and a process using the same for the reforming of the hydrocarbon-comprising compounds are provided. The production of the catalyst is based on contacting, intimately mixing and thermal treating of a hydrotalcite-comprising starting material with a fusible metal salt, which more preferably comprises nickel nitrate hexahydrate, to result in the metal salt melt. After molding and shaping, the compounds are subjected to high-temperature calcination step. In addition, the process using the catalyst for the reforming of the hydrocarbon-comprising compounds is carried out in a temperature range from 500 to 1100 °C at a pressure in the range from 2 to 70 bar. The catalyst is distinguished from the prior art by physicochemical properties.
Abstract:
The invention relates to a method for producing and reacting synthesis gas and is characterized by a plurality of different operating states which consist, substantially, of (i) a day operation and (ii) a night operation, which alternate with one another, wherein the day operation (i) comprises mainly the dry reforming and the steam reforming during which regenerative energy is supplied, and the night operation (ii) comprises mainly the partial oxidation of hydrocarbons, and wherein the synthesis gas produced is used for the production of products of value.
Abstract:
The invention relates to a catalytic high-pressure process for CO 2 reforming of hydrocarbons, preferably methane, in the presence of iridium-containing active masses, and also a preferred active mass in which Ir is present in finely divided form on zirconium dioxide-containing support material. Preferably, the predominant fraction of the zirconium dioxide has a cubic and/or tetragonal structure and, more preferably, the zirconium dioxide is stabilized with at least one doping element. In the process according to the invention, reforming gas at a pressure which is greater than 5 bar, preferably greater than 10 bar, and more preferably greater than 20 bar, and at a temperature which is in the range from 600 to 1200°C, preferably in the range from 850 to 1100°C, and particularly preferably in the range from 850 to 950°C, is brought into contact and reacted to form synthesis gas. The process according to the invention is carried out using a reforming gas that contains only small amounts of steam, or is completely steam-free. The process is characterized in that the formation of coke on the catalyst is greatly restricted when the process is being carried out, as a result of which the process can be carried out over a long time period without in this case significant losses in activity occurring.
Abstract:
The present invention relates to a hexaaluminate-containing catalyst, which comprises a hexaaluminate-containing phase that includes cobalt and at least one additional element from the group La, Ba, Sr. The Co content of the hexaaluminate-containing catalyst is in the range of 2-15 mol%, preferably 3-10 mol% and further preferably in the range of 4-8 mol%, the content of the at least one additional element from the group La, Ba, Sr is in the range of 2-25 mol%, preferably 3-15 mol%, further preferably 4-10 mol% and the content of Al is in the range of 70-90 mol%. In addition to the hexaaluminate-containing phase, the catalyst can include a 0-50 wt% oxide secondary phase, the portion of oxide secondary phase preferably in the range of 3-40 wt% and further preferably in the range of 5-30 wt%. The method according to the invention for producing the catalyst is based on initially bringing a source of aluminium oxide, preferably, a boehmite, into contact with cobalt species and at least one element from the group La, Ba, Sr. The moulded and dried material is preferably calcined at a temperature greater than or equal to 800°C. The reforming method for converting hydrocarbons, preferably methane, in the presence of CO 2 is characterised in that the catalyst is used at a process temperature greater than 700°C, preferably greater than 800°C and further preferably greater than 900°C, the process pressure being greater than 5 bar, preferably greater than 10 bar and further preferably greater than 15 bar.
Abstract:
The invention relates to a process for the parallel preparation of hydrogen, carbon monoxide and a carbon-comprising product, wherein one or more hydrocarbons are thermally decomposed and at least part of the pyrolysis gas formed is taken off from the reaction zone of the decomposition reactor at a temperature of from 800 to 1400°C and reacted with carbon dioxide to form a gas mixture comprising carbon monoxide and hydrogen (synthesis gas).
Abstract:
The invention relates to a method for producing an alkali or earth alkali salt of an α,ß-ethylenically unsaturated carboxylic acid, wherein a) an alkene, carbon dioxide and a carboxylation catalyst is reacted to form an alkene/carbon dioxide/carboxylation catalyst adduct, b) using an auxiliary base, the adduct is decomposed into the auxiliary base salt of the α,ß-ethylenically unsaturated carboxylic acid releasing the carboxylation catalyst, c) using an alkali or earth alkali metal base, the auxiliary base salt of the α,ß-ethylenically unsaturated carboxylic acid is reacted to form the alkali or earth alkali salt of the α,ß-ethylenically unsaturated carboxylic acid releasing the auxiliary base. Salts of α,ß-ethylenically unsaturated carboxylic acids, such as in particular sodium acrylate, are required in large quantities, for example, for producing water-absorbing resins.