Abstract:
A UE with a limited number of antennas may support multiple radio access technologies (RATS). In some instances, the UE may configure a shared antenna for use by a wireless local area network (WLAN) radio access technology (RAT) or a cellular RAT. The UE may also allocate the shared antenna to the WLAN RAT when the cellular RAT is active based at least in part on an operating condition of the WLAN RAT and/or the cellular RAT.
Abstract:
Certain aspects of the present disclosure relate to techniques for transmitting a clear to send (CTS)-to-self indication. According to certain aspects, a method for wireless communications by a wireless device is provided. The method generally includes scheduling a first antenna at the wireless device for communication using one of a first radio access technology (RAT) or a second RAT, scheduling one or more other antennas at the wireless device configured for communication using the first RAT, for communication using the second RAT in order to enable one of transmit or receive diversity on the second RAT or simultaneous communication on the first and second RATs, and transmitting an idle-mode indication to force he first RAT to an idle mode.
Abstract:
A method for mitigating the impact of a power imbalance on a remote data rate in a wireless local area network (WLAN) includes transmitting a wireless local area network (WLAN) acknowledgement (ACK) packet at a first transmit power level to a remote device. The method further includes transmitting, to the remote device, a WLAN data packet at a second transmit power level that is lower than the first transmit power level of the WLAN ACK packet. Another method for mitigating the impact of a power imbalance on a remote data rate in a wireless local area network (WLAN) may include selecting a wireless local area network (WLAN) acknowledgement (ACK) packet transmit rate independent from a rate at which a WLAN data packet is received. This method further includes transmitting, to a remote device, a WLAN ACK packet at the selected WLAN ACK packet transmit rate.
Abstract:
To mitigate potential interference between radio access technologies (RATs) on a multi-RAT device, traffic scheduling rules may be implemented so that communications of the individual RATs are timed in a manner that reduces interference. For example, communications of a Bluetooth/WLAN RAT may be scheduled such that initial and responsive communications of the Bluetooth/WLAN RAT occur during sub-frames of an LTE RAT that are less likely to cause cross-RAT interference.
Abstract:
In a user equipment (UE) with multiple radio access technologies (RATs), communications of one RAT engaged in connection setup may be protected from communications of other RATs. Techniques for protecting such connection setups include performing power backoff on a potentially interfering RAT or implementing a time division multiplexing (TDM) solution alternating when certain RATs are active.
Abstract:
A system and method to facilitate voice activity detection and coexistence manager decisions is provided and include identifying a connection utilizing a first resource and a content stream corresponding to the connection, where the first resource conflicts with a second resource. The content of the content stream is classified into multiple levels based on a value of the content and then a priority is assigned to the first and second resources based on the level of the content of the first resource.
Abstract:
Systems and methodologies are described herein that facilitate a centralized structure for managing multi-radio coexistence for a mobile device and/or other suitable device(s). As described herein, a control plane coexistence manager (CxM) entity and/or a data plane CxM entity can be implemented to directly interact with a set of associated transceivers (e.g., radios, etc.) in order to manage conflicts between events corresponding to the transceivers. Further, CxM operation can be divided between the control and data planes such that the control plane handles configuration and long-term operations such as radio registration, sleep mode management, long-term event resolution, interaction with upper layers, etc., while the data plane handles short-term operations with respect to radio event management based on incoming notifications or event requests. For instance, the data plane can evaluate a set of requested events, select event(s) to be executed, and provide responses to the associated transceivers relating to the selection(s).
Abstract:
Systems and methodologies are described herein that facilitate filtering or clustering of radios and/or other transceivers associated with a communication environment. As described herein, potentially conflicting transceivers supported by a communications device can be managed in an expedited fashion by filtering the transceivers into respective groups or clusters of transceivers that exhibit potential collisions. For example, clusters can be generated such that respective transceivers are associated with a single cluster and respective transceivers associated with a given cluster do not exhibit potential collisions with transceivers not associated with the given cluster. Clustering can be performed graphically as further described herein by generating and analyzing a graph that includes nodes corresponding to respective transceivers and edges representing potential conflicts therebetween. Additionally, resolution tables can be generated using substantially all combinations of conflicting transceivers within a set of transceivers, as determined based on an initial clustering and/or in any other suitable manner.