摘要:
A perfusion bioreactor includes at least one ultrasonic transducer that can acoustically generate a multi-dimensional standing wave. The standing wave can be used to retain cells in the bioreactor, and can also be utilized to dewater or further harvest product from the waste materials produced in a bioreactor.
摘要:
Devices (100) for separating a host fluid from a second fluid or particulate are disclosed. The devices include an acoustic chamber (107), a fluid outlet at a top end of the acoustic chamber (114), a concentrate outlet at a bottom end of the acoustic chamber (116), and an inlet (112) on a first side end (122) of the acoustic chamber (107). An ultrasonic transducer (106) on a side wall of the acoustic chamber and reflector at the opposite side wall create a multi-dimensional acoustic standing wave in the acoustic chamber (107) that traps and separates particulates (e.g. cells) from a host fluid. The host fluid is collected via the fluid outlet (114), and the particulates are collected via the concentrate outlet (116). The device is a large-scale device that is able to process liters/hour, and has a large interior volume.
摘要:
An acoustophoresis device which includes a substantially vertical flow path of the fluid mixture in order to improve separation of particles/secondary fluid from a primary fluid is disclosed. The vertical flow path reduces velocity non-uniformities in the acoustic chamber resulting from gravity forces. The device includes an acoustic chamber in which multidimensional acoustic standing waves are generated. The fluid can be introduced into the acoustic chamber using a dump diffuser in which a plurality of inlets enter near the bottom of the acoustic chamber such that flow symmetry reduces both, gravity driven flow non-uniformities, and any flow interference effects between inlet mixture flow into the acoustic chamber and the continuous gravity driven particle cluster drop out.
摘要:
Devices for separating materials from a host fluid are disclosed. The devices include a flow chamber, an ultrasonic transducer, and a reflector. The ultrasonic transducer and reflector create an angled acoustic standing wave oriented at an angle relative to the direction of mean flow through the flow chamber. The angled acoustic standing wave results in an acoustic radiation force having an axial force component that deflects the materials, so that the materials and the host fluid can thus be separated. The angled acoustic standing wave can be oriented at an angle of about 20° to about 70° relative to the direction of mean flow through the flow chamber to deflect, collect, differentiate, or fractionate the materials from the fluid flowing through the device at flow rates of about 400 mL/min up to about 700 mL/min.
摘要:
A series of multi-dimensional acoustic standing waves is set up inside a growth volume of a bioreactor. The acoustic standing waves are used to hold a cell culture in place as a nutrient fluid stream flows through the cell culture. Biomolecules produced by the cell culture are collected by the nutrient fluid stream and separated downstream of the cell culture.
摘要:
An apparatus includes a flow chamber having at least one inlet and at least one outlet. At least one ultrasonic transducer is located on a wall of the flow chamber, which operates to create a multi-dimensional acoustic standing wave in the flow chamber. A reflector is located on the wall on the opposite side of the flow chamber from the at least one ultrasonic transducer. The reflector is formed from a thin structure that provides a pressure release boundary, such as a plastic film/air interface.
摘要:
A system having improved trapping force for acoustophoresis is described where the trapping force is improved by manipulation of the frequency of the ultrasonic transducer. The transducer includes a ceramic crystal. The crystal may be directly exposed to fluid flow. The crystal may be air backed, resulting in a higher Q factor.
摘要:
An acoustophoresis device made up of modular components is disclosed. Several modules are disclosed herein, including ultrasonic transducer modules, input/output modules, collection well modules, and various connector modules. These permit different systems to be constructed that have appropriate fluid dynamics for separation of particles, such as biological cells, from a fluid.
摘要:
A system having improved trapping force for acoustophoresis is described where the trapping force is improved by manipulation of the frequency of the ultrasonic transducer. The transducer includes a ceramic crystal. The crystal may be directly exposed to fluid flow. The crystal may be air backed, resulting in a higher Q factor.