Abstract:
Vorrichtung (1) und Verfahren zum Begrenzen eines mit Licht aus einer Lichtquelle (2) beaufschlagten Feldes (3), insbesondere auf der Oberfläche eines optischen Elements (4) bzw. einer Probe (5), mit einer eine Schlitzhöhe (7) und eine Schlitzbreite (8) umfassenden Schlitzblende (6), die erste und zweite parallel zueinander auf zwei separaten parallelen Linien angeordnete, linear bewegliche Schieber (9,9') umfasst, welche in Bezug auf eine optische Achse (10) zumindest teilweise symmetrisch zueinander beweglich sind, wobei jeder der beiden Schieber (9,9') zumindest eine optische Öffnung (11,11') umfasst, die - zum stufenlosen Verstellen zumindest der Schlitzhöhe (7) oder der Schlitzbreite (8) - im Bereich der optischen Achse (10) zumindest teilweise auf der optischen Öffnung (11',11) des Nachbarschiebers (9',9) positionierbar ist. Die erfindungsgemässe Vorrichtung (1) bzw. das erfindungsgemässe Verfahren ist dadurch gekennzeichnet, dass die Vorrichtung (1) einen Motorantrieb (15) mit einer Drehachse (16) zum Bewegen der beiden Schieber (9,9') in einer Bewegungsrichtung (19) umfasst, wobei diese Drehachse (16) des Motorantriebs (15) rechtwinklig zu dieser Bewegungsrichtung (19) angeordnet ist.
Abstract:
Concentric spectrometers are plagued with internal reflections due to the inherent nature of more than one optical surface possessing a common center of curvature. Reflections from optical surfaces arise when there is a difference or change in the refractive index of the media in which an optical beam or ray of a given wavelength is propagating. Internal reflections in concentric optical systems can produce a myriad of undesirable optical phenomenon at the image plane such as multiple images of an object, interference fringes, and stray light. As a result a loss in contrast or detection limit arise from such phenomenon in which light or detectable radiation that impinges on the image plane does not add to the formation of the intended image, (stray light). The present invention produces high quality images without the optical phenomenon(s) that arise from internal reflections by removing the reflected radiation from propagating through the optical system.
Abstract:
An optical system for analyzing light from a plurality of samples is provided. The optical system includes a plurality of holders adapted to have samples located therein, a collection lens, a transmission grating, and a reimaging lens. The collection lens is configured to receive and substantially collimate light from the samples. The transmission grating is configured to spectrally disperse the substantially collimated light from the collection lens. The reimaging lens is configured to receive the light from the light dispersing element and direct the light onto a light detection device. A method of optically analyzing at least one sample is also provided.
Abstract:
Color/optical characteristics measuring systems and methods are disclosed. Perimeter receiver fiber optics/elements (7) are spaced apart from a central source fiber optic/element (5) and received light reflected from the surface of the object (20) is measured. Light from the perimeter fiber optics (7) pass to a variety of filters. The system utilizes the perimeter receiver fiber optics (7) to determine information regarding the height and angle of the probe (1) with respect to the object (20) being measured. Under processor control (20), the color measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe (1) may have a removable or shielded tip for contamination prevention.
Abstract:
Le dispositif optique d'imagerie comporte pour l'analyse spectrale d'une scène, d'une part, un masque (8) disposé dans le plan image intermédiaire (PI) comportant un nombre déterminé de fentes isolant chacune une partie déterminée de l'image de la scène observée, la grande dimension des fentes étant parallèle aux lignes de détecteurs élémentaires constituant le détecteur (11) et perpendiculaire à l'axe de rotation (6) du miroir (5), et comporte, d'autre part, une optique dispersive (9), disposée au voisinage de l'optique de reprise (10₁, 10₂) et séparant un nombre déterminé de longueurs d'onde issues du masque (8), l'optique dispersive (9) étant déterminée pour disperser chaque longueur d'onde dans une direction respective déterminée pour couvrir toute la surface sensible du détecteur (11) lors du balayage de la scène. Les applications vont notamment à l'analyse spectrale de la signature thermique d'une cible et à la détection de gaz.
Abstract:
An adjustable optical component (1), for example an optical slit having adjustable slit width, comprises a movable member (9) for providing an optical function, for example a slit (10) and/or a shutter (11), and resilient suspension means (5a-5h, 30, 31) for connecting the movable member (9) to a frame (12). The essential parts of the movable member, of the resilient suspension means and of the frame consist of microstructures which are made of a common base material. Preferably, these parts are manufactured from a silicon chip by a micromechanical technique comprising, for example, anisotropic etching. In the case of an optical slit, the movable member (9) comprises a plurality of openings of different widths which constitute a step slit (10). In order to adjust different slit widths, the member (9) is moved along a line parallel to the center line of the step slit (10), with the force for moving the member (9) being applied at opening (13). When the member (9) is moved by an external force, the resilient silicon beams (5a-5h) are bending and the bars (30, 31) are moving. The movable member (9) has an integrated shutter position (11). A high reproducibility of the adjustment of the center positions of the openings constituting the step slit (10) during repeated movement of the member (9) is ensured.
Abstract:
Spectrometer apparatus (10), for self-calibrating a color image scanner (30) of the line scanner or area scanner type, comprises a member (20), having an optical slit (18), movable into position on an optical axis (14) of the scanner between its polychromatic light source (12) and its focusable lens (16) in a plane occupied by a color image when it is scanned. A diffraction grating (24) is similarly movable onto the optical axis, a given distance from an image sensor (22) of the scanner. The light source illuminates the slit and the diffraction grating disperses transmitted polychromatic light according to its wavelength, forming duplicate spectra off-axis across respective halves of the image sensor, with longer wavelengths being diverted to respectively higher angles.
Abstract:
Präzisionsspalt einstellbarer Breite, bei dem jede Spaltbacke (1,2) über mindestens zwei einander gegenüberliegende Führungs-Parallelogramme (9,10,11,12) geführt ist und bei dem zur Einstellung der Spaltbreite ein einziges, gemeinsam auf die Führungs-Parallelogramme einer Seite wirkendes, senkrecht zur Bewegungsrichtung der Spaltbacken verstellbares Einstellglied (20) vorgesehen ist. Die Führungs-Parallelogramme sind als Feder-Parallelogramme ausgebildet, wobei eine monolithisch aus einer Platte aus federndem Material hergestellte Ausführungsform besondere Vorteile hat.
Abstract:
An entrance slit (10) and exit slit (10) of a monochromator are each shaped so that the width of the slit becomes smaller from its centre towards the ends of its height, where the width is a dimension in the direction of separation of the light in the monochromator. An example of such a shape is rhombic. When the total amount of light emitted from the monochromator and the resolution of the monochromator are set to be the same, the efficiency of light in measuring small samples (12) is increased and the ratio of stray light in the light emitted from the monochromator becomes smaller.