Abstract:
A targeting system for a spectrophotometer includes a plurality of fiber channels, including at least one measurement channel and at least one illumination channel. A slit assembly includes a translucent layer disposed adjacent the plurality of fiber channels, and reflective portion disposed adjacent the translucent layer. Each fiber channel includes a first end, the first end offset from the reflective portion of the slit assembly to allow light transfer from one fiber channel to an adjacent fiber channel. A light source is in optical communication with the at least one illumination channel. A sample plane is in optical communication with a second end of the measurement channel. The system is configured such that light is transmitted from the light source, through the at least one illumination channel, reflected off the slit assembly, transmitted through the measurement channel, and onto the sample plane.
Abstract:
A spectrometer 1A includes a light detection element 20 provided with a light passing part 21, a first light detection part 22, and a second light detection part 26, a support 30 fixed to the light detection element 20 such that a space S is formed, a first reflection part 11 provided in the support 30 and configured to reflect light L1 passing through the light passing part 21 in the space S, a second reflection part 12A provided in the light detection element 20 and configured to reflect the light L1 reflected by the first reflection part 11 in the space S, and a dispersive part 40A provided in the support 30 and configured to disperse and reflect the light L1 reflected by the second reflection part 12A to the first light detection part 22 in the space S. A plurality of second light detection parts 26 is disposed in a region surrounding the second reflection part 12A.
Abstract:
A spectral colorimetric apparatus includes a concave surface reflection type diffraction element configured to disperse an incident light beam; a sensor including a plurality of photoelectric conversion elements, wherein the plurality of photoelectric conversion elements is arranged in a direction parallel to a tangential line of a Rowland circle of the concave surface reflection type diffraction element, each photoelectric conversion elements being configured to receive the light beam dispersed by the concave surface reflection type diffraction element; a housing configured to support the concave surface reflection type diffraction element and the sensor; and a bonding portion provided on the housing, wherein the sensor is fixed to the housing with an adhesive provided between the bonding portion and the sensor. The bonding portion is provided only at a position corresponding to a center of the plurality of photoelectric conversion elements of the sensor in the direction in which the plurality of photoelectric conversion elements is arranged.
Abstract:
Systems and tools for detecting the presence of a substance of interest is presented. The system utilizes a hyperspectral imaging camera to obtain images of an enclosed area, such as a vehicle. Vehicles can include cars, trucks, trains, or boats. The system also includes a processor and storage device. The processor receives the images taken by the hyperspectral imaging camera. Next, the processor determines whether such images contain certain substances. These substances include alcohol, carbon monoxide, illegal substances, and hazardous chemicals. The storage device is electrically coupled to the processor, and is used to store certain data information such as detection events, substance detected, and the time of detection. Such information can be sent over the internet, or streamed live to a laptop at a remote location. The present embodiment can be used by law enforcement to monitor vehicles of interest, and become an important part of public safety.
Abstract:
An imaging assembly for a spectrometer includes a substrate with first and second modules thereon containing respective arrays of detector elements positioned so the arrays are elongated along a first axis with a gap therebetween. A third module including a third array of detector elements is also thereon, spaced from the first axis, at least as long as the gap, and smaller than the elongation of either of the first or second arrays. Further thereon are first and second slits elongated along a second axis spaced from and generally parallel to the first axis, each being at least as long as the respective arrays. A third slit at least as long as the gap is also therein, spaced from the first axis, second axis, and third array such that the gap, third slit, and third array are generally along a third axis generally perpendicular to the first and second axis.
Abstract:
A spectral colorimetric apparatus includes a housing which includes a side wall. An outer surface of the side wall is an adjustment surface capable of adjusting a position of a light receiving member by moving in a state in which the light receiving member abuts on the adjustment surface. The light receiving member is supported by the side wall of the housing in a state in which the light receiving member abuts on the adjustment surface and receives a light beam that is dispersed by a concave surface reflection type diffraction element and passes through an opening portion. The adjustment surface is parallel to a tangential line at a part of a Rowland circle of the concave surface reflection type diffraction element, through which a light beam received by the light receiving member passes.
Abstract:
A system for performing high-speed, high-resolution imaging cytometry utilizes a line-scan sensor. A cell to be characterized is transported past a scan region. An optical system focuses an image of a portion of the scan region onto at least one linear light sensor, and repeated readings of light falling on the sensor are taken while a cell is transported though the scan region. The system may image cells directly, or may excite fluorescence in the cells and image the resulting light emitted from the cell by fluorescence. The system may provide a narrow band of illumination at the scan region. The system may include various filters and imaging optics that enable simultaneous multicolor fluorescence imaging cytometry. Multiple linear sensors may be provided, and images gathered by the individual sensors may be combined to construct an image having improved signal-to-noise characteristics.
Abstract:
A monolithic Offner spectrometer is described herein as are various components like a diffraction grating and a slit all of which are manufactured by using a state-of-the-art diamond machining process. In one embodiment, a monolithic Offner spectrometer is directly manufactured by using a diamond machining process. In another embodiment, a monolithic Offner spectrometer is manufactured by using molds which are made by a diamond machining process. In yet another embodiment, a diffraction grating is directly manufactured by using a diamond machining process. In still yet another embodiment, a diffraction grating is manufactured by using a mold which is made by a diamond machining process. In yet another embodiment, a slit is directly manufactured by using a diamond machining process.