Abstract:
There are provided methods for preparing lithium carbonate. For example, such methods can comprise reacting an aqueous composition comprising lithium hydroxide with CO 2 by sparging the CO 2 the said composition, thereby obtaining a precipitate comprising the lithium carbonate. The methods can also comprise inserting at least a portion of the precipitate into a clarifier and obtaining a supernatant comprising lithium bicarbonate and a solid comprising the lithium carbonate, separating the solid from the supernatant; and heating the supernatant at a desired temperature so as to at least partially convert the lithium bicarbonate into lithium carbonate.
Abstract:
A method of recovering rhenium (Re) and other metals from Re-bearing materials in the form of ammonium perrhenate having at least the step of adding Re-bearing materials into a leaching slurry. Additionally, the method has the step of adjusting the pH of the slurry to obtain Re in soluble form in a metal salt solution and insoluble residues; filtering the metal salt solution to remove the insoluble residues; selectively precipitating Re from the metal salt solution; filtering the Re precipitate from the metal salt solution to obtain a Re filtercake; and formulating and drying the Re filtercake to obtain a Re sulfide product. The method further has the step of combining the Re sulfide product with a Molybdenum (Mo) concentrate containing Re to obtain a Mo/Re concentrate; roasting the Mo/Re concentrate to obtain Mo oxide product and a flue gas containing Re; and treating the flue gas containing Re to obtain ammonium perrhenate.
Abstract:
An additional step in which the lithium hydroxide solution produced in step (iii) is carbonated by passing compressed carbon dioxide (88) through the solution, thereby producing a lithium carbonate precipitate, is also disclosed.
Abstract:
An object of the present invention is to provide a method for leaching lithium ion battery scrap and a method for recovering metals from the lithium ion battery scrap, which can effectively reduce treatment costs. The method for leaching the lithium ion battery scrap according to the present invention comprises leaching the scrap of the lithium ion battery containing nickel and/or cobalt and manganese and/or iron in an acidic solution, the method comprising a metal leaching step of leaching nickel and/or cobalt by adding the scrap to the acidic solution, so that manganese and/or iron is first leached to allow metal ions of manganese and/or iron to be present in the acidic solution, and then contacting nickel and/or cobalt with the metal ions of manganese and/or iron in the acidic solution containing the metal ions of manganese and/or iron.
Abstract:
A process for the recovery of lithium from lithium bearing mica rich minerals, the process comprising passing an ore containing one or more lithium bearing mica rich minerals to at least one pre-treatment step, passing the pre-treated ore to an acid leach step thereby producing a pregnant leach solution, subjecting the pregnant leach solution to a series of process steps in which one or more impurity metals are removed, and recovering lithium as a lithium containing salt product.
Abstract:
The invention relates to a method for recovering lithium from lithium-sulfur accumulators, wherein the accumulators are discharged, shredded, and pre-cleaned by sieves or screens to separate housing and electricity collector parts, the remaining material is dispersed in an aqueous medium, the insoluble components are removed by filtration and the electrolyte by phase separation, followed by a method for separating the lithium from the remaining filtrate.
Abstract:
A method and arrangement for recovering lithium carbonate from a raw material containing lithium, which method comprises pulping (1) the raw material containing lithium in the presence of water and sodium carbonate for producing a slurry containing lithium from the raw material containing lithium. After pulping the lithium-containing slurry is leached (2) for dissolving the lithium in the solution thus producing a solution containing lithium carbonate. After pulping and leaching the method comprises carbonating (3) the solution containing lithium carbonate by using carbon dioxide under atmospheric conditions for producing a solution containing lithium bicarbonate and separating (4) the solids form the solution. The solution containing lithium bicarbonate is purified (5) to produce a purified solution containing lithium bicarbonate, and recovering by crystallizing (6) lithium carbonate from the purified lithium bicarbonate-containing solution.
Abstract:
The invention relates to a method for the hydrometallurgical recovery of lithium from the fraction of used galvanic cells containing lithium, iron and phosphate. According to the invention, a fraction containing lithium, iron and phosphate having an aluminum content of up to 5% by weight, and having a particle size of up to 150 μm, is introduced into sulfuric acid having a concentration of 0.5 to 3 mol/l in an amount that is at least stoichiometric relative to the lithium content of the fraction containing lithium, iron and phosphate and in a solid-to-liquid ratio in the range of 100 to 750 g/l, hydrogen peroxide is added in an amount that is at least stoichiometric relative to the iron content which is to be oxidized of the lithium iron phosphate-containing fraction or a lithium iron phosphate-containing fraction having an aluminum content of up to 5% by weight, and having a particle size of up to 500 μm, is introduced into hydrochloric acid having a concentration of 0.5 to 3 mol/l in an amount that is at least stoichiometric relative to the lithium content of the lithium iron phosphate-containing fraction and in a solid-to-liquid ratio in the range of 50 to 450 g/l, hydrogen peroxide is solublized at temperature of between 25 - 70°C in an amount that is at least stoichiometric relative to the iron content which is to be oxidised of the lithium iron phosphate-containing fraction or a lithium iron phosphate-containing fraction, the solution that contains the lithium sulphate solution or lithium chloride solution is separated off and the remaining residue is washed at least twice, the wash solution containing the separated lithium sulphate and the lithium sulphate and the wash solutions containing the lithium chloride and the lithium chloride are combined, and are converted to lithium hydroxide by electrodialysis on bipolar membranes.