摘要:
An illustrative embodiment of a data collection method and apparatus comprises at least one sensor that may be configured as a mobile data collection apparatus, which sensor may be in communication with a controller. The data collection apparatus may include one or more sensors, including but not limited to air pressure, air humidity, air temperature, road surface temperature, lightning distance, light level, precipitation rate, ozone level, carbon dioxide level, nitrous oxide level, and methane level; all of which may be in communication with a controller. One or more sensors may be positioned on or within a main assembly.
摘要:
A system includes a capacitive transducer, an excitation circuit, and a measuring circuit. The excitation circuit is configured to excite the capacitive transducer and the measuring circuit measures an output signal from the capacitive transducer responsive to the excitation voltage. The excitation circuit includes a voltage source for providing a first voltage in response to receipt of a supply voltage, a voltage generator coupled to the voltage source for receiving the first voltage and generating a second voltage that is greater than the supply voltage, and a control circuit coupled to the voltage source and the voltage generator. The control circuit is configured to provide any of a system ground, the first voltage, and the second voltage to first and second terminals of the capacitive transducer, and particularly, being configured to apply the system ground and the second voltage in the form of two consecutive stimuli with opposite polarities.
摘要:
A microelectromechanical (MEMS) accelerometer has a proof mass, a sense electrode, and an auxiliary electrode. The sense electrode is located relative to the proof mass such that a capacitance formed by the sense electrode and the proof mass changes in response to a linear acceleration along a sense axis of the accelerometer. The auxiliary electrode is located relative to the proof mass such that a capacitance formed by the auxiliary electrode and proof mass is static in response to the linear acceleration. A sense drive signal is applied at the sense electrode and an auxiliary drive signal is applied at the auxiliary electrode. The sense drive signal and the auxiliary drive signal have difference frequencies. A portion of a sensed signal at the sense drive frequency is used to determine linear acceleration while a portion of the sensed signal at the auxiliary drive frequency is used to identify damage within a sense path from the proof mass.
摘要:
The invention relates to a method for detecting a defect in an acceleration sensor (6). In order to be able to reliably detect a defect in an acceleration sensor (6), according to the invention the acceleration sensor (6) generates a signal which is checked during a test as to whether a variable (a) dependent on the signal fulfills a predefined condition with respect to a reference value (r 1 , r 2 , r 3 ) and, on the basis of the test, it is determined whether the acceleration sensor (6) is defective.
摘要:
A method is provided for testing a multi-axis micro-electro-mechanical system (MEMS) acceleration sensor. The method includes applying a first voltage to a first-axis excitation plate to move a first proof mass in contact with a proof mass stop; applying a second voltage to a second-axis excitation plate while maintaining the first voltage to the first-axis excitation plate, to move the first proof mass in a direction orthogonal to the first-axis while in contact with the proof mass stop; applying one or more low voltage excitation signals to the first-axis excitation plate; and detecting if an output voltage of the MEMS device is higher than a threshold voltage.
摘要:
A method for closed loop operation of a capacitive accelerometer comprising: a proof mass; first and second sets of both fixed and moveable capacitive electrode fingers, interdigitated with each other; the method comprising: applying PWM drive signals to the fixed fingers; sensing displacement of the proof mass and changing the mark:space ratio of the PWM drive signals, to provide a restoring force on the proof mass that balances the inertial force of the applied acceleration and maintains the proof mass at a null position; detecting when the mark:space ratio for the null position is beyond a predetermined upper or lower threshold; and further modulating the PWM drive signals by extending or reducing x pulses in every y cycles, where x>1 and y>1, to provide an average mark:space ratio beyond the upper or lower threshold without further increasing or decreasing the mark length of the other pulses.
摘要:
The invention falls within the field of the techniques for manufacturing seismic monitoring systems and is applicable to structures related to civil engineering. The accelerometric sensor comprises - one or more accelerometers (2a, 2b); - a main microprocessor (7); - a control microprocessor (8); - a temperature sensor (3); - a CAN bus driver (4); - two connectors (5), one input and one output, of a CAN bus line; - an input clock circuit (11); - an error signaling circuit (10); - a power supply unit (9); - a container element (12), which at its interior contains the above components.