摘要:
A microelectromechanical device that comprises a first structural layer, and a movable mass suspended to a primary out-of plane motion relative the first structural layer. A cantilever motion limiter structure is etched into the movable mass, and a first stopper element is arranged on the first structural layer, opposite to the cantilever motion limiter structure. Improved mechanical robustness is achieved with optimal use of element space.
摘要:
The invention relates to a capacitive micromechanical sensor structure comprising a stator structure rigidly anchored to a substrate and a rotor structure movably anchored by means of spring structures to the substrate. The stator structure has a plurality of stator finger support beams and the rotor structure has a plurality of rotor finger support beams. Stator fingers along the stator finger support beam of the stator structure extend into rotor gaps along the rotor finger support beam of the rotor structure, and rotor fingers along the rotor finger support beam of the rotor structure extend into stator gaps along the stator finger support beam of the stator structure.
摘要:
A micro-electro-mechanical systems (MEMS) device comprises at least one proof mass configured to have a first voltage and a motor motion in a first horizontal direction. At least one sense plate is separated from the proof mass by a sense gap, with the sense plate having an inner surface facing the proof mass and a second voltage different than the first voltage. A set of stop structures are on the inner surface of the sense plate and are electrically isolated from the sense plate. The stop structures are configured to prevent contact of the inner surface of the sense plate with the proof mass in a vertical direction. The stop structures have substantially the same voltage as that of the proof mass, and are dimensioned to minimize energy exchange upon contact with the proof mass during a shock or acceleration event.
摘要:
An accelerometer comprises a support, a first mass element and a second mass element, the mass elements being rigidly interconnected to form a unitary movable proof mass, the support being located at least in part between the first and second mass elements, a plurality of mounting legs securing the mass elements to the support member, at least two groups of movable capacitor fingers provided on the first mass element and interdigitated with corresponding groups of fixed capacitor fingers associated with the support, and at least two groups of movable capacitor fmgers provided on the second mass element and interdigitated with corresponding groups of fixed capacitor fingers associated with the support.
摘要:
An external force detecting device capable of accurately and easily detecting external force applied to a piezoelectric piece is provided. A crystal piece 2 is cantilever-supported in a container 1. Excitation electrodes 31, 41 are formed on an upper face and lower face, respectively, for example in a center portion of the crystal piece 2. On a front end portion of a lower face side of the crystal piece 2, a movable electrode 5 connected via a lead-out electrode 42 to the excitation electrode 41 is formed on the lower face side, and a fixed electrode 6 is provided on a bottom portion of the container 1 to face this movable electrode 5. The excitation electrode 31 on the upper face side and the fixed electrode 6 are connected to an oscillation circuit 14. When the crystal piece 2 bends by external force applied, capacitance between the movable electrode 5 and fixed electrode 6 changes, and this capacitance change is regarded as a change in oscillation frequency of the crystal piece.
摘要:
The present invention easily achieves an accurate control structure for limiting displacement of a weight (310; 310B). An SOI substrate with a trilaminar structure including a silicon layer (10), a silicon oxide layer (20), and a silicon layer (30) is prepared, and slits (S1-S4) are opened by applying induced coupling plasma etching which can selectively remove only silicon from the upper side. Then, the same etching is applied from the lower side to form grooves (G1, G2), whereby the silicon layer (30) is separated into a weight (310; 310B) and a pedestal (330; 330B). Next, the structure is immersed in an etchant which can selectively remove only silicon oxide, whereby the vicinities of exposed portions of the silicon oxide layer (20) are removed to form joint layers. A glass substrate (400) is joined to the bottom surface of the pedestal (330; 330B). Piezo resistor elements (Rx1-Rx4, Ry1-Ry4, Rz1-Rz4) are formed on the upper surface of the silicon layer (100) to detect bending. The degree of freedom of upward displacements of the weight (310; 310B) is accurately set based on the thickness of the joint layer (200; 200B).
摘要:
A method is provided for testing a multi-axis micro-electro-mechanical system (MEMS) acceleration sensor. The method includes applying a first voltage to a first-axis excitation plate to move a first proof mass in contact with a proof mass stop; applying a second voltage to a second-axis excitation plate while maintaining the first voltage to the first-axis excitation plate, to move the first proof mass in a direction orthogonal to the first-axis while in contact with the proof mass stop; applying one or more low voltage excitation signals to the first-axis excitation plate; and detecting if an output voltage of the MEMS device is higher than a threshold voltage.
摘要:
A robust microelectromechanical structure that is less prone to internal or external electrical disturbances. The structure includes a mobile element with a rotor suspended to a support, a first frame anchored to the support and circumscribing the mobile element, and a second frame anchored to the support and circumscribing the mobile element between the mobile element and the first frame, electrically isolated from the first frame. The rotor and the second frame are galvanically coupled to have a same electric potential.