摘要:
Provision of a manufacturing method for forming lamination of a plurality of dielectric layers on a substrate of a plasma display panel. A forming process for forming a photosensitive glass material layer and a patterning process for exposing required regions of the resulting photosensitive glass material layer to light are repeated in each formation of a first photosensitive glass material layer L1 and a second photosensitive glass material layer L2. After completion of the individual forming process and the individual patterning process for each of the first and second photosensitive glass material layers L1 and L2, a developing process for removing the unexposed regions and a burning process following the developing process are each performed on both of the first and second photosensitive glass material layers L1 and L2 together.
摘要:
Disclosed is a method of fabricating barrier ribs in a plasma display panel using photosensitive glass powder includes the steps of preparing photosensitive glass powder by reducing a photosensitive glass material to fine powder, putting the photosensitive glass powder or the photosensitive glass powder mixed with a UV-ray transmitting organic material in a mold (52), aligning a photomask (54) over the photosensitive glass powder (50) and carrying out exposure thereon, carrying out first and second thermal treatment on the photosensitive glass powder (50) so as to generate different crystalline phases at exposed (56a) and non-exposed (56b) portions, respectively, and forming barrier ribs (62) by etching the portion where the crystalline phase is generated.
摘要:
A protected faceplate structure (900) includes a faceplate (100) and a barrier layer (902) of silica. The faceplate (100) may be made of soda glass, and the barrier layer (902) may be made of silica.
摘要:
The invention concerns a glass spacer designed to maintain two substrates spaced apart, its glass matrix having electronic conductivity, in volume, ranging between 10?-13 and 10-5 ohm-1.cm-1¿. Preferably, the glass spacer also has a modulus of elasticity higher than 90 GPa.
摘要:
The invention relates to a flat discharge lamp (1), comprising two substantially parallel plates (5, 6) and two support areas serving to support both plates against each other. Each support area consists of a component having a high-viscosity (8) and a low viscosity (7) at assembling temperature. Before assembling the discharge vessel, the support areas are larger than final distance envisaged between both plates. The low viscosity component (7) compensates for possible local deviations in the distance between both plates when the discharge vessel are assembled.
摘要:
A molding composition is provided that includes an inorganic component, an organic binder component, and a debinding catalyst. The molding composition is capable of lowering the sintering temperature, for example, when the molding composition is used to make ceramic microstructures such as barrier ribs for plasma display panels.
摘要:
A method of producing a substrate (12) for a plasma display panel, which comprises the steps of: contacting a rib precursor composition (32) containing a first photo-setting initiator having a first absorption edge and a first photo-setting component, closely with a base (12); filling a mold (30), obtained by photo-setting of a second photo-setting component in a presence of a second photo-setting initiator having a second absorption edge whose wavelength is shorter than that corresponding to the first absorption edge of the first photo-setting initiator, with the rib precursor composition (32); irradiating the rib precursor composition (32) with light having a wavelength longer than that corresponding to the second absorption edge to set the rib precursor composition (32), thereby forming a rib (34) on the base (12); and removing the mold (30) from the resulting base (12) on which the rib (34) is formed.
摘要:
A curable slurry for forming ceramic microstructures on a substrate using a mold. The slurry is a mixture of a ceramic powder, a fugitive binder, and a diluent. The ceramic powder has a low softening temperature in a range of about 400 °C to 600 °C and a coefficient of thermal expansion closely matched to that of the substrate. The fugitive binder is capable of radiation curing, electron beam curing, or thermal curing. The diluent promotes release properties with the mold after curing the binder or quick and complete burn out of the binder during debinding.