摘要:
A portable oxygen concentrator retrofit system and method in which an existing portable oxygen concentrator may be retrofitted to output an enriched oxygen gas at a flow rate suitable for use in a patient ventilation system without the need for an external source of compressed gas.
摘要:
A patient ventilator secretion management system is disclosed. The system has a valve (26) with an input in pneumatic communication with a therapeutic breathing gas source (18). The valve (26) has variable positions, each of which corresponds to a specific flow rate of gas being output therefrom. A patient ventilation interface (12) is in pneumatic communication with the valve over a gas delivery circuit. A controller (30) in communication with the valve (26) regulates the position thereof. The controller (30) sequentially switches the valve from one of the variable positions to another to output a first range of fluctuating flow rates of gas for delivery to the patient ventilation interface during at least a selected one of patient expiratory and inspiratory phases.
摘要:
A patient ventilation apparatus is disclosed. The apparatus includes an inlet port connectible to an oxygen source with pressurized oxygen enriched gas. An outlet port is connectible over a gas delivery conduit to a patient interface configured for fitment on a patient respiratory passageway. A valve is in pneumatic communication with the inlet port and with the outlet port. A first pressure sensor measures a patient interface pressure, which is connectible to the first pressure sensor over a pressure sensor line. A second pressure sensor measures a valve output pressure. A controller is in communication with the first pressure sensor, the second pressure sensor, and the flow sensor, to detect a patient inspiratory phase and a patient expiratory phase based upon a combination of measurements of the first pressure sensor and the second pressure sensor and to regulate the valve to selectively deliver pressurized oxygen enriched gas to the patient interface.
摘要:
A continuous positive airway pressure (CPAP) apparatus for respiratory assistance of a pattern is disclosed. There is a blower having an output connectible to a ventilation mask wearable by the patient. A first pressure sensor measures blower pressure at the output of the blower, and a second pressure sensor that is connectible to the ventilation mask measures mask pressure therein. A pressure controller is connected to the first pressure sensor and the second pressure sensor, and a patient inspiratory phase and a patient expiratory phase is be detectable by the pressure controller to regulate therapeutic pressure at the patient mask, based upon pressure differentials between the mask pressure and the blower pressure.
摘要:
A method for detecting sleep for continuous positive airway pressure (CPAP) therapy is disclosed. Discrete values of a control signal generated by a pressure controller to regulate delivered pressure at the patient are measured over a predefined time window encompassing one or more respiratory cycles. A baseline control signal value is generated from a weighted average of the measured discrete values of the control signal. Estimates of a respiratory cycle period, an inspiration control time, and an expiration control time are then generated. Estimates of one or more secondary control signal properties for each of the respective inspiration control time and expiration control time are generated. Pressure to the patient is increased in response to an evaluation of the estimates of the one or more secondary control signal properties being indicative of the patient reaching a sleep state.
摘要:
A patient ventilation system including a ventilation interface and a ventilation source pneumatically coupled to a patient over the ventilation interface is disclosed. There is a controller that regulates airflow delivery from the ventilation source to the patient according to one or more predefined treatment configuration settings. The controller has an inactive ventilation state, a ventilation initiation state, a treatment state, a treatment suspension state, and a ventilation deactivation state. A display interface is coupled to the controller and configured to generate, exclusively, a device activation user element with the pressure controller in the inactive ventilation state, a fitment feedback indicator and a treatment screen in a ventilation initiation state, the fitment feedback indicator and a treatment status screen in the treatment state, a treatment suspension screen in the treatment suspension state, and a treatment conclusion screen in the ventilation deactivation state.