摘要:
In one embodiment, the present invention provides a system to deliver at least one therapeutic gas to a spontaneously breathing patient, wherein the rate of delivery of the at least one therapeutic gas exceeds the patient's inspiratory flow rate, and the amount of the at least one therapeutic gas that is wasted is minimized or eliminated.
摘要:
The invention relates to an anesthesia ventilation device for providing automated ventilation to a patient, comprising: an expiratory port and an inspiratory port for connecting a ventilation tube for respiratory gas and facing the patient; a respiratory gas delivery unit; at least one volumetric flow rate sensor for detecting a volumetric flow rate of the respiratory gas; at least one respiratory gas sensor for detecting a carbon dioxide concentration and at least one pressure sensor for detecting a pressure of the respiratory gas; and, in addition, at least one computing unit which is designed to control, in a first operating mode, the respiratory gas delivery unit depending on a predetermined respiratory rate, the detected pressure and a predetermined set pressure value, wherein the computing unit is also designed to detect the presence of a desired operating state with regard to the automated ventilation on the basis of the detected volumetric flow rate and the detected carbon dioxide concentration and in addition, when this is detected, to enable a transition into a second operating mode.
摘要:
A method for controlling the delivery of a breathing gas to a patient. The method comprises: delivering a flow of breathing gas to a patient, the breathing gas having a breathing gas flowrate and a fraction of inspired oxygen; measuring an oxygen saturation level of the patient; determining a respiratory rate of the patient; automatically adjusting the fraction of inspired oxygen of the breathing gas based on the measured oxygen saturation level of the patient and a breathing gas flowrate set-point; and automatically adjusting the breathing gas flowrate set-point based on the determined respiratory rate of the patient.
摘要:
A treatment gas supplying apparatus includes: a first mixed gas producing section that is configured to produce a first mixed gas in which a first gas and a treatment gas having a treatment effect are mixed with each other in a first ratio; and a second mixed gas producing section that is configured to produce a second mixed gas in which a second gas and the treatment gas are mixed with each other in a second ratio, the second ratio being within a constant difference from the first ratio.
摘要:
Described herein is a flow control valve for a ventilator that controls gas flow through a patient line in response to a target pressure within the line. The valve controls gas flow by (i) providing both a high frequency signal and a low frequency signal through a coil positioned in a fixed magnetic field, (ii) determining a position of the coil by detecting the high frequency signal, and (iii) controlling a position of the coil by adjusting the low frequency signal based on the determined position and/or velocity of the coil.
摘要:
A high flow nasal therapy system (1) has a gas supply (2), a nebulizer (12), and a nasal interface (7). There are two branches (11, 10) and a valve (6) linked with the controller, the branches including a first branch (11) for delivery of aerosol and a second branch (10) for delivery of non-aerosolized gas. The controller controls delivery into the branches (11, 10), in which flow is unidirectional in the first and second branches, from the gas supply towards the nasal interface. The first branch (11) includes the nebulizer (12) and a line configured to store a bolus of aerosol during flow through the second branch (10). The valve (6) comprises a Y-junction between the gas inlet on one side and the branches on the other side.
摘要:
One form of the present technology includes a fluid connector for delivery of breathing gas to a patient from a respiratory pressure therapy device, the fluid connector including a first end with a first opening to deliver a fluid flow, a seal portion extending around a periphery of the first opening, and a latching portion, a second end with a second opening to receive the fluid flow, a sealing surface extending around a periphery of the second opening and configured to engage the seal portion to form a face seal, and a complementary latching portion configured to engage with the latching portion
摘要:
Positive airway pressure (“PAP”) systems and methods are provided which supply a patient with a range of pressures for treatment when the patient is determined to be asleep, and an awake pressure for use when the patient is determined to be awake, the awake pressure configured for the comfort of the patient. The awake pressure is configured to be lower than the lower bound of the pressure range and can be a therapeutic or sub-therapeutic pressure. The PAP systems and methods disclosed herein advantageously allow for the pressure range to be tailored for effective treatment of sleep disordered breathing while allowing the awake pressure to be set for the comfort of the patient. This can advantageously increase both the efficacy of the treatment of SDB and patient compliance with the treatment.
摘要:
A respiratory assistance apparatus (1) for delivering a flow of gas to a patient (P) comprises a gas delivery conduit (2) for conveying a flow of gas, measuring means (6) designed to measure at least one parameter representative of the flow of gas and to supply at least one signal corresponding to said parameter, signal-processing means (8) designed to process said signal coming from the measuring means and to deduce from said signal at least one item of information relating to performaace and/or discontinued performance of chest contractions (CT), calculating means designed to calculate at least one duration of discontinuation or absence of chest contractions (tNCT), and storage means (12) configured to register said duration of discontinuation or absence of chest contractions.
摘要:
An apparatus and method of controlling the delivery of therapeutic gas delivered to a patient undergoing positive airway pressure therapy is described. The method includes providing a flow of gas to a patient's airway at a pressure, obtaining information from the range of 0 to 25 Hz of the frequency domain of the flow, and adjusting the pressure based on the information. The apparatus includes a blower for providing a flow of gas to a patient's airway at a pressure, a sensor to measure a characteristic of the flow, a controller to obtain information from the range of 0 to 25 Hz of the frequency domain of the characteristic, and a pressure regulator for adjusting the pressure based on the information.