摘要:
This disclosure provides a biochip comprising a plurality of wells. The biochip includes a membrane that is disposed in or adjacent to an individual well of the plurality of wells. The membrane comprises a nanopore, and the individual well comprises an electrode that detects a signal upon ionic flow through the pore in response to a species passing through or adjacent to the nanopore. The electrode can be a non-sacrificial electrode. A lipid bilayer can be formed over the plurality of wells using a bubble.
摘要:
A system for communicating information from an array of sensors is disclosed. The system comprises a sensor array that includes a plurality of sensors, wherein each sensor senses a physical property of a material that is in communication with the sensor. The system further comprises signal processing circuitry associated with each sensor that integrates the output of the sensor over time and compares the integrated output to a threshold. The system further comprises a communication network coupled to the signal processing circuitry that outputs information indicating that the integrated output corresponding to a given sensor has reached the threshold.
摘要:
Described herein are variants of alpha-hemolysin having at least one mutation selected from T12R, T12K, N17R, N17K or combinations of T12 and N17 mutations. The variants in some embodiments may further comprise H144A. The α-hemolysin variants have a decreased time to thread.
摘要:
A nanopore based sequencing chip is disclosed. The sequencing chip comprises a first portion made from a first wafer. The first portion includes an array of nanopore cells. The first portion further includes a measurement circuit connected to one or more nanopore cells, the measurement circuit producing an output measurement signal. The first portion further includes one or more vias transmitting the output measurement signal. The sequencing chip further includes a second portion made from a second wafer, the second portion comprising one or more corresponding vias receiving the output measurement signal.
摘要:
A method of identifying a molecule is disclosed. A molecule is drawn to a nanopore by applying a first voltage signal to a pair of electrodes during a first period, wherein the first voltage signal causes a first ionic current through the nanopore that is indicative of a property of a portion of the molecule proximate to the nanopore. The molecule is released from the nanopore by applying a second voltage signal to the pair of electrodes during a second period, wherein the second voltage signal causes a second ionic current through the nanopore. The first period and the second period are determined based at least in part on a net ionic current through the nanopore comprising the first ionic current and the second ionic current.
摘要:
A system for regulating a temperature of a measurement array is disclosed. The system includes a measurement array including a plurality of sensors, wherein the plurality of sensors are integrated onto an integrated circuit die. The system includes a thermal sensor integrated onto the integrated circuit die, wherein the thermal sensor senses a temperature associated with the plurality of sensors. The system further includes a heat pump coupled to the integrated circuit die, wherein the heat pump is controlled by a feedback control circuit including the thermal sensor.
摘要:
This disclosure provides systems and methods for attaching nanopore-detectable tags to nucleotides. The disclosure also provides methods for sequencing nucleic acids using the disclosed tagged nucleotides.
摘要:
Described herein are methods and devices for capturing and determining the identity of molecules using nanopores. The molecules can be counted, sorted and/or binned rapidly in a parallel manner using a large number of nanopores (e.g., 132,000 nanopores reading 180 million molecules in 1 hour). This fast capture and reading of a molecule can be used to capture probe molecules or other molecules that have been generated to represent an original, hard to detect molecule or portions of an original molecule. Precise counting of sample molecules or surrogates for sample molecules can occur. The methods and devices described herein can, among other things, replace flow cytometers and other counting instruments (e.g., while providing increased precision and throughput relative to a flow cytometer). In some cases, the devices and methods capture and hold particular molecules or surrogates of molecules in the nanopores and then eject them into clean solution to perform a capture, sorting, and binning function similar to flow cytometers.
摘要:
A method of analyzing molecules using a nanopore array including a plurality of cells included on a chip is disclosed. Nanopores are caused to be formed in at least a portion of the plurality of the cells. A first physical measurement of the nanopores is evaluated. It is determined whether to cause the molecules to interact with the nanopores. At least a portion of the nanopores is caused to interact with the molecules. A second physical measurement of the nanopores that indicates a property of the molecules is evaluated. It is determined whether to cause the nanopores to be reformed so that the cells may be reused to interact with additional molecules.