摘要:
A urethane (meth)acrylate composition and an active energy ray-curable composition which realize high hardness and excellent flexibility and weather resistance in a cured product are provided. Also, a cured product that exhibits high hardness and excellent flexibility and weather resistance is provided. A urethane (meth)acrylate composition being (i) a mixture containing: a reaction product of a compound (A) and a compound (B); a reaction product of the compound (A) and a compound (C); and a compound (D), or (ii) a mixture containing: a reaction product of the compound (A), the compound (B), and the compound (C); and the compound (D), in which the compound (A) is polyisocyanate, the compound (B) is monofunctional (meth)acrylate having a hydroxy group, the compound (C) is polyfunctional (meth)acrylate having a hydroxy group, and the compound (D) is polyfunctional (meth)acrylate having no hydroxy group, and a weight ratio (B/(C + D)) of a constituent unit derived from the compound (B) with respect to a total (C + D) of a constituent unit derived from the compound (C) and the compound (D) is from 0.30 to 2.00, and a weight proportion (C/(C + D)) of the constituent unit derived from the compound (C) with respect to the total (C + D) of the constituent unit derived from the compound (C) and the compound (D) is from 0.28 to 0.67.
摘要:
The present invention relates to (meth)acrylated compounds (A) prepared from (a) at least one cyclic ether polyol, (b) at least one linking compound (b1) and/or (b2), wherein the linking compound (b1) is selected from cyclic compounds (b11) containing at least one group in the cycle where X = O or NH, from hydroxy acids (b12) and/or from alkylene oxides (b13) containing from 2 to 4 carbon atoms and the linking compound (b2) is selected from epihalohydrins or polyisocyanates, (c) a (meth)acrylating compound; and to their use in radiation curable compositions for the coatings, inks, overprint varnishes, adhesives and composites.
摘要:
The present invention relates to (meth)acrylated compounds (A) prepared from (a) at least one cyclic ether polyol, (b) at least one linking compound (b1) and/or (b2), wherein the linking compound (b1) is selected from cyclic compounds (b11) containing at least one group in the cycle where X = O or NH, from hydroxy acids (b12) and/or from alkylene oxides (b13) containing from 2 to 4 carbon atoms and the linking compound (b2) is selected from epihalohydrins or polyisocyanates, (c) a (meth)acrylating compound; and to their use in radiation curable compositions for the coatings, inks, overprint varnishes, adhesives and composites.
摘要:
Provided is an active energy ray curable resin composition for the formation of a hard coating layer on a thermoplastic resin product, where the hard coating layer is one having good resistance to scratches and abrasion and strong resistance to impact and weather or one having very good resistance to scratches and abrasion. The composition contains a urethane (meth)acrylate (A) having an average number of functional groups of 3 to 6 and having, in molecular skeleton, an organic group corresponding to a tricyclodecanedimethanol represented by following Formula (1), except for removing two hydrogen atoms of two hydroxyl groups therefrom; and a microparticulate silica (S) having a volume median diameter of 1 to 100 nm as determined by dynamic light scattering. The composition contains 10 to 40 percent by weight of the urethane (meth)acrylate (A) and 10 to 60 percent by weight of the microparticulate silica (S) based on the total weight of non-volatile matter in the composition.
摘要:
Provided is a compound capable of forming a coating layer that has excellent scratch resistance and still has stain resistance (in particular, stain resistance against hair dyes) and workability (impact resistance) both at satisfactory levels. The urethane (meth)acrylate has a cyclic structure in a molecule. The urethane (meth)acrylate has a total weight of carbon, oxygen, nitrogen, and sulfur atoms constituting the ring or rings of the cyclic structure of 10 percent by weight or more based on the total amount (100 percent by weight) of the urethane (meth)acrylate. The urethane (meth)acrylate also has an average number of functional groups of 3.5 to 4.5.
摘要:
Provided is an active energy ray curable resin composition for the formation of a hard coating layer on a thermoplastic resin product, where the hard coating layer is one having good resistance to scratches and abrasion and strong resistance to impact and weather or one having very good resistance to scratches and abrasion. The composition contains a urethane (meth)acrylate (A) having an average number of functional groups of 3 to 6 and having, in molecular skeleton, an organic group corresponding to a tricyclodecanedimethanol represented by following Formula (1), except for removing two hydrogen atoms of two hydroxyl groups therefrom; and a microparticulate silica (S) having a volume median diameter of 1 to 100 nm as determined by dynamic light scattering. The composition contains 10 to 40 percent by weight of the urethane (meth)acrylate (A) and 10 to 60 percent by weight of the microparticulate silica (S) based on the total weight of non-volatile matter in the composition.
摘要:
Provided is an active energy ray curable resin composition for the formation of a hard coating layer on a thermoplastic resin product, where the hard coating layer is one having good resistance to scratches and abrasion and strong resistance to impact and weather or one having very good resistance to scratches and abrasion. The composition contains a urethane (meth)acrylate (A) having an average number of functional groups of 3 to 6 and having, in molecular skeleton, an organic group corresponding to a tricyclodecanedimethanol represented by following Formula (1), except for removing two hydrogen atoms of two hydroxyl groups therefrom; and a microparticulate silica (S) having a volume median diameter of 1 to 100 nm as determined by dynamic light scattering. The composition contains 10 to 40 percent by weight of the urethane (meth)acrylate (A) and 10 to 60 percent by weight of the microparticulate silica (S) based on the total weight of non-volatile matter in the composition.