摘要:
The operation of a fossil-fueled thermal system (20) is quantified by obtaining a reference fuel chemistry before on-line operation (270), and thereafter operating on-line. In on-line operation (270), a set of measurable operating parameters is measured, including at least effluent concentrations of oxygen and carbon dioxide, and optionally the concentration of effluent water and the concentration of effluent sulfur oxide. An indicated Air/Fuel ratio is obtained, as are the ambient concentration of oxygen, and air preheater (36) leakage (29) and dilution factors. The fuel ash (Eq. 29) and fuel water are calculated, and the complete As-Fired fuel chemistry is calculated. From the complete As-Fired fuel (Eq. (13)) chemistry, the pertinent systems parameters such as reference fuel heating value, boiler efficiency (32)(Eq. 4(21)), system efficiency, fuel flow rate (Eq. 4(21)), total effluent flow rate (20), individual effluent flow rates (292), and individual emission rates (292) are determined in a fully consistent manner.
摘要:
This invention relates to any fossil fueled thermal system, and especially relates to large commercial steam generators used in power plants, and, more particularly, to a method and apparatus for determining fuel chemistry in essentially real time based on effluents resulting from combustion, associated stoichiometrics, and the genetics of the fossil fuel. Knowing the system's fuel chemistry, the fuel calorific value, the fuel flow and the thermal performance associated with the thermal system may then be determined in essentially real time.
摘要:
This invention relates to a fossil-fired thermal system such as a power plant (20) or steam generator, and, more particularly, to a method for rapid detection of tube failures (27) and their location within the power plant (20) or steam generator, without need for direct instrumentation, thereby preventing more serious damage and minimizing repair time on the effected heat exchanger (28). This method is applicable to Input/Loss methods of monitoring fossil-fired thermal systems.