摘要:
A method for operating a power manger having a plurality of device ports for connecting with external power devices and a power bus for connecting with each device port. The method includes the steps of: accessing information from each external power device connected to one of the plurality of device ports, characterizing each external power device as one of a power load, a power or energy source and a rechargeable energy source and if no rechargeable energy sources are connected, associating external devices characterized as power loads with a power allocation interface, associating external devices characterized as power or energy sources with a source allocation interface, calculating a total power available from the source allocation interface, allocating the total power available to the power allocation interface, and connecting as many power loads to the power bus as can be powered by the total power available.
摘要:
This invention relates generally to filtration cassettes (10), and, more particularly to methods of fabricating cross-flow filtration cassettes. Cassettes of the invention are characterized, in part, by an internal porting (e.g., manifolding) feature (5 and 7) which eliminates the need for a separate step to seal individual components prior to assembly of the filtration cassette. Filtration cassettes of the present invention can be manufactured from conventional membrane (13) and flow screen (9) components and can utilize both injection molding and vacuum assisted resin transfer molding fabrication processes.
摘要:
The present invention provides membrane cassettes and stacks thereof which are suitable for a use in a variety of electrochemical applications. The invention further provides membrane cassettes which comprise one or more external manifolds which deliver reagents and/or coolant to one or more reactant or coolant flow fields of the membrane cassettes. In particular, the present invention describes the insert molding method, whereby the plenums of the external manifolds are created during the stack encapsulation step. The invention describes several methods for creating the manifold runner geometry via insert-molding, machining, or with separate components.
摘要:
The present invention provides membrane cassettes and stacks thereof which are suitable for a use in a variety of electrochemical applications. The invention further provides membrane cassettes which comprise one or more composite membrane electrode assemblies which have a peripheral gasket where the gasket has at least one groove or channel for introducing and distributing a sealant about the cassette. In certain preferred embodiments, the invention provides cassettes and stacks which are suitable for use in fuel cell applications.
摘要:
The invention provides a fuel cell stack including a layer of encapsulating material disposed about the separator plate, MEA, and reactant manifold, wherein the reactant manifold is bounded at least in part by the encapsulating material. The fuel cell stack also includes a first opening through the plate body to the first face from the second face, and an open channel in the second face extending from the opening toward a periphery of the plate. The invention also provides a fuel cell stack having a first face including an opening for passage of a reactant there through, a first reactant flow field defined thereon, and a first raised surface formed thereon substantially surrounding the opening. The first raised surface is configured and adapted to mate with a second surface on a face of an adjacent plate to create a flow obstruction for encapsulating material.
摘要:
The present invention provides membrane cassettes and stacks thereof which are suitable for a use in a variety of electrochemical applications. The invention further provides membrane cassettes which comprise one or more bipolar plates which have one or two reactant or coolant flow fields consisting of at least one groove in opposing surfaces of the bipolar plate. In certain preferred embodiments, the invention provides cassettes and stacks which are suitable for use in fuel cell applications. Particularly preferred embodiments of the invention include design improvements which enhance the performance and reliability of certain components of the fuel cell stack.
摘要:
The present invention provides membrane cassettes and stacks thereof which are suitable for a use in a variety of electrochemical and ion exchange applications. The present invention also provides methods of manufacturing the membrane cassettes and stacks of the invention. In certain preferred embodiments, the invention provides cassettes and stacks which are suitable for use in fuel cell applications.
摘要:
The present invention provides membrane cassettes and stacks thereof which are suitable for a use in a variety of electrochemical applications. The invention further provides membrane cassettes which comprise one or more bipolar plates which have one or two reactant or coolant flow fields consisting of at least one groove in opposing surfaces of the bipolar plate. In certain preferred embodiments, the invention provides cassettes and stacks which are suitable for use in fuel cell applications.
摘要:
An improved electrochemical polymer electrolyte membrane cell stack is provided that includes one or more individual fuel cell cassettes, each fuel cell cassette having at least one membrane electrode assembly, fuel flow field and oxidant flow field. Within each fuel cell cassette, each membrane electrode assembly has at least one manifold opening for the passage of reactant manifolds through the cassette, all of which are bonded about the perimeter by a sealant, and each flow field has at least one manifold opening and any manifold openings on the flow fields which do not correspond to a manifold providing reactant for distribution to such flow field is bonded about its perimeter by a sealant. Each fuel cell cassette may also contain other typical components of a electrochemical polymer electrolyte membrane cell stack, such as separator plates or coolant flow fields, which also have manifold openings which may or may not be bonded about the perimeter. The membrane electrode assembly, flow fields, and other components are encapsulated along the peripheral edges by a resin such that the entire periphery of the fuel cell cassette is encapsulated by the resin.