摘要:
A titanium alloy may be characterized by a good oxidation resistance, high strength and creep resistance at elevated temperatures up to 750°C, and good cold/hot forming ability, good superplastic forming performance, and good weldability. The alloy may contain, in weight percent, aluminum 4.5 to 7.5, tin 2.0 to 8.0, niobium 1.5 to 6.5, molybdenum 0.1 to 2.5, silicon 0.1 to 0.6, oxygen up to 0.20, carbon up to 0.10, and balance titanium with incidental impurities.
摘要:
A hot creep stretch wrap forming method includes heating a metal bar to a forming temperature within a temperature range suitable for creep deformation thereof, applying a stretching force to the metal bar at a strain rate no greater than 0.05 inch/inch/second, and wrapping the metal bar around a die, preferably having a thermally and/or electrically insulative work surface. The stretching force is typically applied to a strain ranging from 0.5% to 15.0%. The metal bar most preferably is a titanium alloy with a forming temperature ranging from 0.45 to 0.60 of its melting temperature. The wrapped metal bar is held in position and its temperature maintained within the temperature range typically for 5 to 120 minutes for stress relief. Preferably, the metal bar is held substantially at the forming temperature throughout the process. Thermal insulation around the die and metal bar reduce heat loss from the metal bar.
摘要:
A titanium alloy, components formed thereof, and methods of use are provided. Embodiments of the alloy may be useful in the energy extraction environment. Components formed of the alloy may include subsea or land-based components associated with oil and gas production and drilling.
摘要:
A hot creep stretch wrap forming method includes heating a metal bar (16) to a forming temperature within a temperature range suitable for creep deformation thereof, applying a stretching force to the metal bar at a strain rate no greater than 0.05 inch/inch/second, And wrapping the metal bar around a die (12), preferably having a thermally and /or electrically insulative work surface (34, 36). The stretching force is typically applied to a strain ranging from 0.5% to 15.0%. The metal bar (16) most preferably is a titanium alloy with a forming temperature ranging from 0.45 to 0.60 of its melting temperature. The wrapped metal bar is held in position and its temperature maintained within the temperature range typically for 5 to 120 minutes for stress relief. Preferably, the metal bar (16) is held substantially at the forming temperature throughout the process. Thermal insulation (62) around the die and metal bar reduce heat loss form the metal bar.
摘要:
A hot stretch wrap forming apparatus includes a die having a work surface formed of a thermally and/or electrically insulative material, and a set of spaced jaws for stretching and wrapping the metal form around the work surface. A preferred insulative material is a flexible blanket of woven ceramic fibers. A heat source is used to heat the metal form prior to stretching and wrapping. The metal form is preferably heated resistively to maintain a uniform temperature throughout the metal form. The die is typically formed primarily of metal and thus the insulative material thermally insulates the metal form from the metal of the die to prevent the formation of hot spots which would otherwise occur therebetween. The insulative material also electrically insulates the metal form from the metal of the die to prevent shunting therebetween.