摘要:
The application relates to a high-efficiency heterojunction cell structure and a preparation method thereof. The high-efficiency heterojunction cell structure includes a bottom electrode, a back transparent conductive film layer, an n-type doped amorphous silicon layer, a back intrinsic amorphous silicon layer, a back intrinsic amorphous silicon buffer layer, an n-type monocrystal silicon wafer, a front intrinsic amorphous silicon buffer layer, a front intrinsic amorphous silicon layer, a p-type doped amorphous silicon layer, a front transparent conductive film layer and a top electrode which are sequentially arranged from bottom to top. The high-efficiency heterojunction cell structure and the preparation method thereof greatly improve the definition of an amorphous silicon/silicon substrate interface, improve the passivation effect, and further improve the open circuit voltage of the cell and the filling factor related to the open circuit voltage.
摘要:
Provided are a silicon wafer surface passivation method and an N-type bifacial cell preparation method based on the silicon wafer surface passivation method. The silicon wafer surface passivation method comprises: processing a silicon wafer surface, so as to remove an oxide layer, borosilicate glass and/or phosphosilicate glass on the silicon wafer surface; in the irradiation of ultraviolet, blowing the processed silicon wafer surface by using ozone gas, so as to form silicon oxide of a first preset thickness on the processed silicon wafer surface, or soaking the silicon wafer in ozone-containing water so as to form silicon oxide of a first preset thickness on the processed silicon wafer surface. In the irradiation of ultraviolet, silicon oxide can be formed on the silicon wafer surface by blowing the silicon wafer surface by using ozone gas or soaking the silicon wafer in ozone-containing water, which can be complemented in a normal temperature, thereby greatly reducing costs; and the method is particularly suitable for large-scale industrialized production.
摘要:
Disclosed is a lightweight solar cell module with high mechanical load resistance, comprising a solar cell string (1), EVA layers (2) stacked on two sides of the solar cell string, a front panel glass layer (3) stacked on one of the EVA layers, a back panel (4) stacked on the other of the EVA layers, frames (7) for clamping the back panel and the front panel glass layer, and a junction box (6) mounted on the back panel for connecting the solar cell strings and external circuits, wherein the front panel glass layer is made of super clear patterned glass, and at least one reinforcing rib (5) is mounted inside the frames. On the one hand, arranging at least one reinforcing rib between the back panel and the frames can effectively improve the capability of mechanical load resistance of the cell module, and on the other hand, setting the front panel glass to be super clear patterned glass can beneficially reduce the weight of the cell module, and improve the photoelectric conversion efficiency thereof.
摘要:
Provided is a manufacturing method for an N-type double-sided battery. The method comprises the following steps: S1, performing texturing treatment; S2, evenly coating a boron source on the upper surface of an N-type silicon wafer in a spin coating or silk-screen printing manner, and conducting boron diffusion in a furnace tube; S3, manufacturing a mask; S4, conducting phosphorus diffusion on the lower surface of the N-type silicon wafer, and forming a high-low-junction structure on the lower surface; S5, removing phosphorosilicate glass and the mask that is manufactured in step S3; S6, manufacturing a passivation anti-reflection film made from aluminum oxide and silicon nitride on the surface of the diffused boron, and manufacturing a silicon nitride passivation anti-reflection film on the surface of the diffused phosphorus; and S7, manufacturing an electrode. The manufacturing method for the N-type double-sided battery is simple in process, and effectively improves the efficiency of the battery. In addition, also provided is an N-type double-sided battery. A passivation layer manufacturing method for the N-type double-sided battery is a low-temperature process, and does not damage a PN junction.