Abstract:
Selective solar absorbent coating and manufacturing method, with solar absorption and low emissivity properties. The coating comprises a substrate (1) of metal, dielectric or ceramic material, at least one highly reflective metal layer (2) in mid-far infrared applied to the substrate itself which provides low emissivity properties, a multi-layer structure of alternating dielectric and metallic layers (3) of subnanometric thickness applied to the reflective metal layer and at least one dielectric layer (4) that acts as an anti-reflective layer for the solar spectrum. The coating is applicable as a selective absorbent coating in absorbent tubes for parabolic-trough solar collectors, in solar panels for hot water, heating or domestic cooling, both in the form of absorbent tubes and absorbent sheets, in capture systems in tower solar thermoelectric power plants, and in capture systems in Stirling disk systems.
Abstract:
Portable spectrophotometer and method for characterizing solar collector tubes for simultaneously and on-field characterizing reflection and transmission coefficients. This device includes all the components needed to take this measurement, such as a module that takes the measurement of the reflection coefficient (R) of the inner tube (1'), a module that takes the measurement of transmission coefficient (T) of the outer tube (1"), an electronic data acquisition and processing system (12), an external computer (13) for controlling the device and sending the measured data (17) and a communication system (15) between device and the computer (13).
Abstract:
The invention relates to a spectrophotometer for the automated optical characterization of solar collector tubes and to a method for the operation thereof, that measures the coefficient of transmission of the glass tube (13) and of reflection of the metal tube (15). The device includes all the necessary components for taking said measurement, such as the optical bench (1) supporting the tube (2), the standard or framework (3), and the optical modules for the device, a main module (5) that generates the light bundles, a measuring module (4) that measures the coefficient of transmission of the outer glass tube (13) and the coefficient of reflection of the inner metal tube (15), a mechanical system of tube rotation (9), an electronic system of data acquisition and processing (6), an external computer (7) for controlling the device and processing the data measured, and a system of communication (8) between the device and the computer (7).