摘要:
A computer system optimized for real-time applications which provides increased performance for real-time applications over current computer architectures. The system includes a dedicated multimedia engine coupled directly to the main memory which performs real-time operations, including audio and video functions, as well as others. The multimedia engine includes multimedia memory and one or more DSP engines. The DSP engines may comprise either dedicated audio or video engines or general purpose DSP engines. The DSP engines couple through one or more I/O channels to respective video, audio and communication ports. The multimedia engine includes video ports for coupling to a video monitor, audio ports for coupling to speakers and one or more communication ports. The multimedia memory in the multimedia engine comprises a portion of the main memory address space. Thus the multimedia is used for real-time or multimedia data and is also used by the CPU as overflow memory space.
摘要:
A computer system optimized for real-time applications which provides increased performance over current computer architectures. The system includes a standard local bus, such as the PCI bus, and also includes a dedicated real-time bus or multimedia bus. The PCI bus and the multimedia bus are comprised on the motherboard and include connector slots for receiving add-in cards. Multimedia device expansion cards each include two connectors which correspond to the PCI bus and the multimedia bus. Thus multimedia devices such as video cards, audio cards, etc., as well as communications devices, transfer real-time data through a separate bus without requiring arbitration for the PCI bus. The computer suystem of the present invention thus provides much greater performance for real-time applications than prior systems.
摘要:
The PC audio circuit described interfaces with and provides audio enhancement to a host personal computer of the type including a central processor, system memory and a system bus. The PC audio circuit includes a digital signal processor (DSP) for processing wavetable data and generating digital audio signals for a plurality of voices. The wavetable data is stored in the host computer's system memory and transferred in portions, as needed by the DSP, to a smaller, low-cost cache memory included with the PC audio circuit. The DSP processes several frames of data samples for an active voice before processing another voice. Processing in this manner reduces the percentage use of system bus bandwidth and alleviates concerns about the maximum allowable system bus latency. Digital audio signals generated for each active voice are accumulated in cache memory. When the digital audio signals for all active voices have been accumulated, the accumulated data is transmitted from the cache memory to an external digital-to-analog converter. Since wavetable data is stored in system memory, the cache memory is smaller and less expensive than the local memory in prior art PC audio circuits. Thus, the described PC audio circuit has a lower overall cost.
摘要:
A computer system and method optimized for real-time multimedia applications are presented. The computer system, including a dedicated multimedia engine directly to a real-time data cache, provides increased performance over current computer architectures. The multimedia engine includes at least one DSP engine which coupled through at least one I/O channel to I/O ports. Obtaining multimedia commands and data from main memory and/or the real-time data cache, the multimedia engine performs a number of multimedia operations including audio and video functions. A CPU, coupled through a chip set logic or bridge logic to the main memory, generates multimedia commands and data. The CPU groups multimedia commands and data into separate command and data elements, and writes the command and data elements to a multimedia address space in main memory. The CPU also writes element structure information to the multimedia address space. The element structure information includes location information used to retrieve multimedia commands and data from main memory. The real-time data cache allows multimedia data from an external source to be stored in a location other than main memory, and allows this multimedia data to be shared by the CPU and the multimedia engine. The real-time data cache may also store multimedia commands and data for use by the multimedia engine.
摘要:
A system and method for managing operating modes within a semiconductor chip for optimal power and performance while meeting a reliability target are described. A semiconductor chip includes a functional unit and a corresponding reliability monitor. The functional unit provides actual usage values to the reliability monitor. The reliability monitor determines expected usage values based on a reliability target and the age of the semiconductor chip. The reliability monitor compares the actual usage values and the expected usage values. The result of this comparison is used to increase or decrease current operational parameters.
摘要:
The PC audio circuit (10) described interfaces with and provides audio enhancement to a host personal computer of the type including a central processor, system memory and a system bus. The PC audio circuit (10) includes a digital signal processor (DSP) (16) for processing wavetable data and generating digital audio signals for a plurality of voices. The wavetable data is stored in the host computer's system memory and transferred in portions, as needed by the DSP (16) to a smaller, low-cost cache memory (22) included with the PC audio circuit (10). The DSP (16) processes several frames of data samples for an active voice before processing another voice. Processing in this manner alleviates concerns about the percentage use of system bus bandwidth and the maximum allowable system bus latency. These concerns are further alleviated by deriving frequency compensated wavetable data and storing it in system memory to be retrieved by the DSP (16) for generating digital audio signals having high frequency ratios. Digital audio signals generated for each active voice are accumulated in cache memory (22). When the digital audio signals for all active voices have been accumulated, the accumulated data is transmitted from the cache memory (22) to an external digital-to-analog converter. Since wavetable data is stored in system memory, the cache memory (22) is smaller and less expensive than the local memory in prior art PC audio circuits. Thus, the described PC audio circuit (10) has a lower overall cost.
摘要:
A computer system and method optimized for real-time multimedia applications are presented. The computer system, including a dedicated multimedia engine directly to a real-time data cache, provides increased performance over current computer architectures. The multimedia engine includes at least one DSP engine which coupled through at least one I/O channel to I/O ports. Obtaining multimedia commands and data from main memory and/or the real-time data cache, the multimedia engine performs a number of multimedia operations including audio and video functions. A CPU, coupled through a chip set logic or bridge logic to the main memory, generates multimedia commands and data. The CPU groups multimedia commands and data into separate command and data elements, and writes the command and data elements to a multimedia address space in main memory. The CPU also writes element structure information to the multimedia address space. The element structure information includes location information used to retrieve multimedia commands and data from main memory. The real-time data cache allows multimedia data from an external source to be stored in a location other than main memory, and allows this multimedia data to be shared by the CPU and the multimedia engine. The real-time data cache may also store multimedia commands and data for use by the multimedia engine.
摘要:
The PC audio circuit (10) described interfaces with and provides audio enhancement to a host personal computer of the type including a central processor, system memory and a system bus. The PC audio circuit (10) includes a digital signal processor (DSP) (16) for processing wavetable data and generating digital audio signals for a plurality of voices. The wavetable data is stored in the host computer's system memory and transferred in portions, as needed by the DSP (16) to a smaller, low-cost cache memory (22) included with the PC audio circuit (10). The DSP (16) processes several frames of data samples for an active voice before processing another voice. Processing in this manner alleviates concerns about the percentage use of system bus bandwidth and the maximum allowable system bus latency. These concerns are further alleviated by deriving frequency compensated wavetable data and storing it in system memory to be retrieved by the DSP (16) for generating digital audio signals having high frequency ratios. Digital audio signals generated for each active voice are accumulated in cache memory (22). When the digital audio signals for all active voices have been accumulated, the accumulated data is transmitted from the cache memory (22) to an external digital-to-analog converter. Since wavetable data is stored in system memory, the cache memory (22) is smaller and less expensive than the local memory in prior art PC audio circuits. Thus, the described PC audio circuit (10) has a lower overall cost.
摘要:
A computer system optimized for real-time applications which provides increased performance over current computer architectures. The system includes a standard local bus, such as the PCI bus, and also includes a dedicated real-time bus or multimedia bus. The PCI bus and the multimedia bus are comprised on the motherboard and include connector slots for receiving add-in cards. Multimedia device expansion cards each include two connectors which correspond to the PCI bus and the multimedia bus. Thus multimedia devices such as video cards, audio cards, etc., as well as communications devices, transfer real-time data through a separate bus without requiring arbitration for the PCI bus. The computer suystem of the present invention thus provides much greater performance for real-time applications than prior systems.