摘要:
A method for preparing titanium alloy that is created to be formed into a bearing component, wherein the titanium alloy comprises from 5 to 7 wt % Al, from 3.5 to 4.5 wt % V, from 0.5 to 1.5 wt % Mo, from 2.5 to 4.5 wt % Fe, from 2.5 to 4.5 wt % Fe, and from 0.05 to 2 wt % Cr. The alloy can optionally include one or more of the following elements: up to 2.5 wt % Zr, up to 2.5 wt % Sn, and up to 0.5 wt % C. The balance of the composition comprises Ti together with unavoidable impurities. The alloy is heated to a temperature T below the (α+β/β)-transition temperature Tβ and then quenched. The alloy is then aged a temperature of from 400 to 600° C.
摘要:
A method for preparing titanium alloy that is created to be formed into a bearing component, wherein the titanium alloy comprises from 5 to 7 wt % Al, from 3.5 to 4.5 wt % V, from 0.5 to 1.5 wt % Mo, from 2.5 to 4.5 wt % Fe, from 2.5 to 4.5 wt % Fe, and from 0.05 to 2 wt % Cr. The alloy can optionally include one or more of the following elements: up to 2.5 wt % Zr, up to 2.5 wt % Sn, and up to 0.5 wt % C. The balance of the composition comprises Ti together with unavoidable impurities. The alloy is heated to a temperature T below the (α+β/β)-transition temperature Tβ and then quenched. The alloy is then aged a temperature of from 400 to 600° C.
摘要:
A lubricant comprises oleophilic thickening fibers dispersed in an oil and/or lubricating fluid. The oleophilic thickening fibers have a diameter between 50 nm and 10 microns and a length that is at least 5 times the diameter.
摘要:
A method for preparing titanium alloy that is created to be formed into a bearing component, wherein the titanium alloy comprises from 5 to 7 wt % Al, from 3.5 to 4.5 wt % V, from 0.5 to 1.5 wt % Mo, from 2.5 to 4.5 wt % Fe, from 2.5 to 4.5 wt % Fe, and from 0.05 to 2 wt % Cr. The alloy can optionally include one or more of the following elements: up to 2.5 wt % Zr, up to 2.5 wt % Sn, and up to 0.5 wt % C. The balance of the composition comprises Ti together with unavoidable impurities. The alloy is heated to a temperature T below the (α+β/β)-transition temperature Tβ and then quenched. The alloy is then aged a temperature of from 400 to 600° C.
摘要:
A dry lubricant comprises at least 50 wt% of fibers having a diameter between 50 nm and 10 microns and a length that is at least 5 times the diameter.
摘要:
A lubricant system is disclosed that is formed by contacting a fibrous network with oil and/or lubricating fluid having an affinity for the fibrous network. The fibrous network comprises oleophilic fibers having a diameter between 50 nm and 10 microns and a length that is at least times the diameter. In addition, the oleophilic fibers have an affinity for the oil and/or lubricating fluid.
摘要:
The invention provides a cage for a bearing. The invention further provides the bearing and a method of producing the cage. The cage includes a plurality of pockets at least partially surrounding the rolling elements. The cage further comprises a first material and a second material. The first material is a first printed material printed via an additive manufacturing process that has different properties compared to the second material. The first material is printed in the pockets at a position where, the rolling elements at least occasionally contact the pockets. Using such first printed material allows application of the first printed material at a location where it is needed.
摘要:
A method for preparing titanium alloy that is created to be formed into a bearing component, wherein the titanium alloy comprises from 5 to 7 wt % Al, from 3.5 to 4.5 wt % V, from 0.5 to 1.5 wt % Mo, from 2.5 to 4.5 wt % Fe, from 2.5 to 4.5 wt % Fe, and from 0.05 to 2 wt % Cr. The alloy can optionally include one or more of the following elements: up to 2.5 wt % Zr, up to 2.5 wt % Sn, and up to 0.5 wt % C. The balance of the composition comprises Ti together with unavoidable impurities. The alloy is heated to a temperature T below the (α+β/β)-transition temperature Tβ and then quenched. The alloy is then aged a temperature of from 400 to 600° C.
摘要:
The invention provides a building block for a mechanical construction. The invention further provides a bearing and a method of producing the building block. The building block provides a first printed material printed via an additive manufacturing process on or at least partially embedded in a second material. The first printed material is printed in a pattern configured and constructed for cooperating with a sensor for providing position information of the building block relative to the sensor. The sensor may be a magnetic sensor or an optical sensor. The first printed material may include magnetic particles. The method of producing the building block may include a step of adding the first printed material to the second material via the additive manufacturing process under the influence of a predefined magnetic field.