摘要:
The present application discloses cell-adhesive gellan gum spongy-like hydrogels that are able to entrap/encapsulate adherent cells, which spread within the material, maintaining their phenotype and remaining viable and proliferative. The methodology used to obtain these materials involves hydrogel preparation, freezing, freeze-drying and re-hydration with a saline solution with cells and with/without bioactive molecules. No pre and/or post functionalization of the spongy-like hydrogels with cell adhesive features, as used for other hydrogels, is used. The cell adhesive character of these materials, not observed in hydrogels, is in part explained by their physical properties, between sponges and hydrogels, dissimilar from the precursor hydrogels. The physical properties that are mainly different are the morphology, microstructure, water content, and mechanical performance. Gellan gum spongy-like hydrogels physical properties and biological performance can be tuned by manipulating the parameters involved in spongy-like hydrogel formation. Bioactive molecules can also be entrapped with or without cells to modify the biological performance of the spongy-like hydrogels. These materials can be applied in the context of bioengineering, tissue engineering, regenerative medicine and biomedical applications.