摘要:
A wireless power transfer apparatus has a resonant circuit electrically coupled to a power converter. The resonant circuit includes a magnetic coupler Lpt for magnetic coupling with a second apparatus. A controller associated with the power converter is configured to vary a relative phase of operation of the power converter with respect to the second apparatus, the phase being varied to at least partially compensate for variations in a resonant frequency of the resonant circuit.
摘要:
The present invention provides a polyphase inductive power transfer (IPT) system comprising a primary power supply comprising a plurality of primary conductors, the primary conductors being individually selectively operable to provide or receive a magnetic field for inductive power transfer; and at least one pick-up comprising one or more pick-up conductors, the one or more pick-up conductors each being individually selectively operable to magnetically couple with a primary conductor to control power transfer between the primary power supply and a load coupled or coupleable with the respective pick-up. The polyphase primary power supply may be used to power a plurality of single-phase pick-ups, one or more polyphase pick-ups, or a combination thereof. Also disclosed are polyphase primary and secondary converters for use in such a system.
摘要:
A control method for use in a primary side power converter (1) of an inductive power transfer (IPT) system. The power transfer from the primary side to one or more secondary pick-ups is monitored, and the operating frequency of the primary side power converter (1) is varied in proportion to a difference between the monitored power transfer and a power capability of the primary side power converter. The frequency variation can be sensed by the or each pick-up (2) to regulate the power transfer and to prevent overloading from occurring.
摘要:
An inductive power transfer system (1) primary (20) or secondary circuit (21) has a first compensation network (6, 12) and second compensation network (7, 13). The compensation networks each have a different power transfer characteristic with respect to relative movement of the primary or secondary magnetic flux coupling structures (8, 9). The power transfer characteristics are such that one compensates for the other to allow a smooth or constant overall power transfer is despite the relative movement.