Abstract:
The invention relates to a process for regeneration of an adsorber (A) by contact with a stream (S1), wherein the stream (S1) is heated in advance by at least two heat exchange units (HEU1) and (HEU2). As outflow of the adsorber (A) a stream (S2) is obtained, which is passed through at least two heat exchange units (HEU1) and (HEU2) traversed by stream (S1), wherein the temperature of stream (S2) fed into each heat exchange unit is higher than the temperature of stream (S1) fed into the heat exchange units (HEU1) and (HEU2), in order to directly transfer heat from stream (S2) to stream (S1).
Abstract:
A process for the regeneration of a copper-, zinc- and zirconium oxide-comprising adsorption composition after use thereof for the adsorptive removal of carbon monoxide from substance streams comprising carbon monoxide and at least one olefin, in which the adsorption composition is heated to a temperature in the range from 160 to 400 °C and a regeneration gas is passed through the adsorption composition, wherein the regeneration gas comprises 1000 to 3000 ppm of oxygen in an inert carrier gas.
Abstract:
Disclosed is a process for the regeneration of an adsorber (A1). The adsorber (A1) is regenerated by contact with a gaseous stream (S2) and the outflow of the adsorber (A1) comprising condensate of stream (S2) and organic composition (OC1) collected in a device. After regeneration of the adsorber (A1) the stream (S2) in the adsorber (A1) is replaced completely or at least partially by the content of the device. Then the adsorber (A1) is fed with organic composition comprising at least one olefin, at least one alkane and at least one compound containing oxygen and/or sulfur.
Abstract:
A process for the regeneration of a copper-, zinc- and zirconium oxide-comprising adsorption composition after use thereof for the adsorptive removal of carbon monoxide from substance streams comprising carbon monoxide and at least one olefin, in which the adsorption composition is heated to a temperature in the range from 160 to 400 °C and a regeneration gas is passed through the adsorption composition, wherein the regeneration gas comprises 1000 to 3000 ppm of oxygen in an inert carrier gas.
Abstract:
A process for the production of oligomerized olefins comprising the following steps: purification of an organic composition (OC1) in at least one adsorber to obtain an organic composition (OC2); oligomerization of organic composition (OC2) in the presence of a catalyst to obtain an organic composition (OC3); distillation of organic composition (OC3) in a distillation column (D1) to obtain an organic composition (OC4) from the upper part of (D1) and an organic composition (OC5) from the lower part of (D1); hydrogenation of organic composition (OC4) to obtain an organic composition (OC1 1) and regeneration of an adsorber (A1) employing organic composition (OC11) as regeneration media.