Abstract:
The present invention relates to a catalyst system for preparing carboxylic acids and/or carboxylic anhydrides, which has at least three catalyst layers arranged one on top of another in the reaction tube, with the proviso that the least active catalyst layer is preceded upstream by at least one more active catalyst layer in flow direction. The invention further relates to a process for gas phase oxidation in which a gaseous stream which comprises a hydrocarbon and molecular oxygen is passed through a plurality of catalyst layers, the least active catalyst layer being preceded upstream in flow direction by a more active catalyst layer.
Abstract:
A catalyst for the oxidation of SO 2 to SO 3 , a process for producing it and its use in a process for the oxidation of SO 2 to SO 3 are provided. The catalyst comprises an active substance comprising vanadium, alkali metal compounds and sulfate applied to a support comprising naturally occurring diatomaceous earths, wherein the support comprises at least two different naturally occurring uncalcined diatomaceous earths which differ in terms of the structure type of the siliceous algae from which they are derived.
Abstract:
The invention relates to a method for start-up of oxidation catalysts, characterised in that the catalyst is started up at a temperature of 360 °C to 400 °C, with an air supply of 1.0 to 3.5 Nm3/h and a hydrocarbon loading of 20 to 65 g/Nm3 with formation of a hot spot in the first 7 to 20 % of the catalyst bed at a temperature of 390 °C to less than 450 °C.
Abstract:
A catalyst for the oxidation of SO 2 to SO 3 , a process for producing it and its use in a process for the oxidation of SO 2 to SO 3 are provided. The catalyst comprises active substance comprising vanadium, alkali metal compounds and sulfate applied to a support comprising naturally occurring diatomaceous earths, wherein the support comprises at least one relatively soft naturally occurring uncalcined diatomaceous earth which has a percentage reduction of at least 35% in its D 50 value determined in a particle size determination according to the dry method in comparison with the wet method.
Abstract:
What is described is a process for starting up a gas phase oxidation reactor for oxidation of o-xylene to phthalic anhydride, said reactor comprising at least one catalyst layer and being temperature-controllable by means of a heat carrier medium, wherein a) the catalyst layer is interrupted by a moderator layer which is less catalytically active than the catalyst layer or is catalytically inactive, b) a gas stream is passed through the reactor with an initial loading of o-xylene and at an initial temperature of the heat transfer medium, c) the loading of the gas stream is increased to a target loading and, in parallel, the temperature of the heat transfer medium is lowered to an operating temperature. The introduction of the moderator layer allows the loading to be increased more rapidly and the startup time to be shortened.
Abstract:
The present invention relates to a method for gas phase oxidation, wherein a gaseous flow comprising aromatic hydrocarbon and molecular oxygen is conducted through two or more catalyst layers. The present invention further relates to a catalyst system for gas phase reaction using an upstream layer. The product of diameter times the height, or the volume, of the inert and/or catalyst rings disposed upstream is less than at least one of the subsequent catalyst layers, or the quotient of the surface per volume of the upstream inert and/or catalyst rings is greater than at least one of the subsequent catalyst layers.
Abstract:
Method for gas phase oxidation, in which a gaseous flow which comprises at least one aromatic hydrocarbon and molecular oxygen is directed through one or more catalyst layers, wherein a moderator layer is arranged between two catalyst layers arranged one behind the other in the flow direction of the gaseous flow, wherein the moderator layer is catalytically less active than the catalysts adjoining upstream and downstream or is catalytically inactive. The desired oxidation products are obtained in high yield for longer periods.