摘要:
Bio-adhesive textured surfaces are described which allow implants to be localized within a living body. Hierarchical levels of texture on an implantable medical device, some capable of establishing a Wenzel state and others a Cassie state, are employed to interface with living structures to provide resistance to device migration. Since a gaseous state is traditionally required to establish a Cassie or Wenzel state, and gases do not remain long in living tissue, described are tissue/device interactions analogous to the above states with the component normally represented by a gas replaced by a bodily constituent, wherein separation of tissue constituents develops and an analogous Cassie, Wenzel or Cassie-Wenzel state evolves.
摘要:
The present disclosure provides copolymers useful in medical devices. For example, the disclosure provides copolymers comprising the polymerization product ester block, ether blocks and diisocyanates. In certain embodiments, the disclosure provides a medical copolymer for implantation comprising ester blocks and ether blocks, wherein: the ester blocks comprise a negative free energy transfer and the ether blocks comprise a positive free energy transfer, the ether and ester blocks are less than 1/10 the length of said copolymer, and, the blocks are distributed such that no domain of contiguous blocks possessing the same polarity of free energy transfer are less than 1/3 of the molecular weight of the copolymer. The disclosure further provides methods of making the aforementioned polymers, and medical devices comprising the polymers.
摘要:
Bio-selective textured surfaces are described which mediate foreign body response, bacterial adhesion, and tissue adhesion on devices implanted in a mammalian body. Hierarchical levels of texture, some capable of establishing a Wenzel state others a Cassie state, are employed to interface with living structures, either to promote or discourage a particular biological response/interaction. Since a gaseous state is traditionally required to establish a Cassie or Wenzel state, and gases do not remain long in living tissue, described are tissue/device interactions analogous to the above states with the component normally represented by a gas replaced by a bodily constituent, wherein separation of tissue constituents develops and a desired interaction state evolves.