摘要:
The present invention provides a system and a method for the production of microparticles and nanoparticles of materials that can be dissolved. The system and method of the present invention provide quicker freezing times, which in turn produces a more uniform distribution of particle sizes, smaller particles, particles with increased porosity and a more intimate mixing of the particle components. The system and method of the present invention also produce particles with greater surface area than conventional methods. One form of the present invention provides a method for the preparation of particles. An effective ingredient is mixed with water, one or more solvents, or a combination thereof, and the resulting mixture is sprayed through an insulating nozzle located at or below the level of a cryogenic liquid. The spray generates frozen particles.
摘要:
Compositions and methods of preparing amorphous drug formulations through hot melt extrusion which result in decreased decomposition of the desired drug are provided herein. Also provided are methods and compositions which further comprise a pharmaceutically acceptable thermoplastic polymer. In some embodiments, these compositions comprise a therapeutically active agent which is only sparingly soluble in water.
摘要:
Compositions and methods for making a pharmaceutical dosage form include making a pharmaceutical composition that includes one or more active pharmaceutical ingredients (API) with one or more pharmaceutically acceptable excipients by thermokinetic compounding into a composite. Compositions and methods of preprocessing a composite comprising one or more APIs with one or more excipients include thermokinetic compounding, comprising thermokinetic processing the APIs with the excipients into a composite, wherein the composite can be further processed by conventional methods known in the art, such as hot melt extrusion, melt granulation, compression molding, tablet compression, capsule filling, film-coating, or injection molding.
摘要:
Inhalable compositions are described. The inhalable compositions comprise one or more respirable aggregates, the respirable aggregates comprising one or more poorly water soluble active agents, wherein at least one of the active agents reaches a maximum lung concentration (Cmax) of at least about 0.25 μg/gram of lung tissue and remains at such concentration for a period of at least one hour after being delivered to the lung. Methods for making such compositions and methods for using such compositions are also disclosed.
摘要:
Methods and composition for delivery of enzymes to a subject's airway. In some aspects, nebulized composition of enzymes, such as plasminogen activators are provided. In further aspects perfluorocarbon compositions comprising enzymes, such as plasminogen activators are provided. Compositions may, in some aspects, be used for the treatment of lung infections or acute lung injury, such as inhalational smoke induced acute lung injury (ISALI).
摘要:
The present invention includes compositions and methods for making and using a rapid dissolving, high potency, substantially amorphous nanostructured aggregate for pulmonary delivery of tacrolimus and a stabilizer matrix comprising, optionally, a polymeric or non-polymeric surfactant, a polymeric or non-polymeric saccharide or both, wherein the aggregate comprises a surface area greater than 5 m2/g as measured by BET analysis and exhibiting supersaturation for at least 0.5 hours when 11-15-times the aqueous crystalline solubility of tacrolimus is added to simulated lung fluid.
摘要:
The present invention includes compositions and methods for making and using a rapid dissolving, high potency, substantially amorphous nanostructured aggregate for pulmonary delivery of tacrolimus and a stabilizer matrix comprising, optionally, a polymeric or non-polymeric surfactant, a polymeric or non-polymeric saccharide or both, wherein the aggregate comprises a surface area greater than 5 m2/g as measured by BET analysis and exhibiting supersaturation for at least 0.5 hours when 11-15-times the aqueous crystalline solubility of tacrolimus is added to simulated lung fluid.