摘要:
Aspects of the invention may provide a method and system for adjusting a gain and/or a frequency response of an input signal for a multimode PHY device. A signal divider (704) may apportion the input signal into a gain adjustment signal and/or an equalization adjustment signal upon receipt of the input signal. A signal adjuster (702) coupled to the signal divider (704) may adjust a gain of the apportioned gain adjustment signal within the multimode PHY device (130). An equalizer (706) coupled to the signal divider (704) may be configured to equalize the equalization adjustment signal within the multimode PHY device (130). A summer (708) coupled to the equalizer (706) and signal adjuster (702) may be adapted to sum the adjusted adjustment signal and the equalized equalization adjustment signal within the multimode PHY device (130) to create an output equalized signal (712) having a desired gain and/or frequency response.
摘要:
A system and method are disclosed for supporting 10 Gigabit digital serial communications. Many of the functional components and sublayers of a 10 Gigabit digital serial communications transceiver module are integrated into a single IC chip using the same CMOS technology throughout the single chip. The single chip includes a PMD transmit/receive CMOS sublayer, a PMD PCS CMOS sublayer, a XGXS PCS CMOS sublayer, and a XAUI transmit/receive CMOS sublayer. The single chip supports both 10 Gigabit Ethernet operation and 10 Gigabit Fibre Channel operation. The single chip interfaces to a MAC, an optical PMD, and non-volatile memory.
摘要:
A system and method for reducing noise in a substrate of a chip is provided. The system may include a substrate (70) doped with a first dopant. A first well (80) may be disposed on the substrate and doped with a second dopant. A second well (120) may be disposed within the first well (80) and doped with the second kind of dopant. A first transistor (100) may include one or more first transistor components disposed in the second well (120). The first transistor (100) may be adapted to employ a first type of channel having a quiet voltage source (140) connected to a body thereof. A third well (110) may be disposed within the first well (80) and doped with the first kind of dopant. A second transistor (90) may include one or more second transistor components that may be disposed in the third well (110). The second transistor (90)may be adapted to employ a second type of channel. The first well (80) may shield the substrate (70) from noise in the second well (120) and third well (110).
摘要:
A system and method for reducing noise in a substrate of a chip is provided. The system may include a substrate (70) doped with a first dopant. A first well (80) may be disposed on the substrate and doped with a second dopant. A second well (120) may be disposed within the first well (80) and doped with the second kind of dopant. A first transistor (100) may include one or more first transistor components disposed in the second well (120). The first transistor (100) may be adapted to employ a first type of channel having a quiet voltage source (140) connected to a body thereof. A third well (110) may be disposed within the first well (80) and doped with the first kind of dopant. A second transistor (90) may include one or more second transistor components that may be disposed in the third well (110). The second transistor (90)may be adapted to employ a second type of channel. The first well (80) may shield the substrate (70) from noise in the second well (120) and third well (110).
摘要:
Aspects of the invention may provide a method and system for adjusting a gain and/or a frequency response of an input signal for a multimode PHY device. A signal divider (704) may apportion the input signal into a gain adjustment signal and/or an equalization adjustment signal upon receipt of the input signal. A signal adjuster (702) coupled to the signal divider (704) may adjust a gain of the apportioned gain adjustment signal within the multimode PHY device (130). An equalizer (706) coupled to the signal divider (704) may be configured to equalize the equalization adjustment signal within the multimode PHY device (130). A summer (708) coupled to the equalizer (706) and signal adjuster (702) may be adapted to sum the adjusted adjustment signal and the equalized equalization adjustment signal within the multimode PHY device (130) to create an output equalized signal (712) having a desired gain and/or frequency response.
摘要:
Various circuit techniques for implementing ultra high speed circuits use current-controlled CMOS (C 3 MOS) logic fabricated in conventional CMOS process technology. An entire family of logic elements including inverter/buffers, level shifters, NAND, NOR, XOR gates, latches, flip-flops and the like are implemented using C 3 MOS techniques. Optimum balance between power consumption and speed for each circuit application is achieve by combining high speed C 3 MOS logic with low power conventional CMOS logic. The combined C 3 MOS/CMOS logic allows greater integration of circuits such as high speed transceivers used in fiber optic communication systems. The C 3 MOS structure enables the use of a power supply voltage that may be larger than the voltage required by the CMOS fabrication process, further enhancing the performance of the circuit.
摘要:
A system and method are disclosed for supporting 10 Gigabit digital serial communications. Many of the functional components and sublayers of a 10 Gigabit digital serial communications transceiver module are integrated into a single IC chip using the same CMOS technology throughout the single chip. The single chip includes a PMD transmit/receive CMOS sublayer, a PMD PCS CMOS sublayer, a XGXS PCS CMOS sublayer, and a XAUI transmit/receive CMOS sublayer. The single chip supports both 10 Gigabit Ethernet operation and 10 Gigabit Fibre Channel operation. The single chip interfaces to a MAC, an optical PMD, and non-volatile memory.