Abstract:
Disclosed are optical gain fibers which include an erbium-containing core and a cladding surrounding the core and which have ripple of less than about 25 % over about a 40 nm wide window or ripple of less than about 15 % over about a 32 nm wide window, or both. In one embodiment, the optical gain fibers are pumpable at 980 nm and at 1480 nm. In another embodiment, the optical gain fibers are fusion sliceable. In yet another embodiment, the core includes oxides erbium; the cladding includes silicon dioxide; and the optical gain fiber has a passive loss of less than about 0.5 % of the peak absorption of the erbium absorption band in the vicinity of 1530 nm. The optical gain fibers of the present invention have a wider gain window, improved flatness across the gain window, and/or increased gain as compared to conventional optical gain fibers. Accordingly, they are useful in amplifying optical signals, particularly signals which need to be repeatedly amplified over the course of a long-haul transmission, without losses in the signal quality that are commonly encountered in conventional optical signal amplifying methods.
Abstract:
Disclosed is an optical waveguide fiber preform which is an assembly of one or more core rods (14) surrounded by a plurality of clad rods (10). The clad rods (10) have a central portion (12) and a surrounding layer (22), in which the refractive index of the central portion is lower than that of the surrounding layer. The preform is drawn into an optical waveguide fiber that has a two component clad layer. Proper choice of the central portion (12) and surrounding layer provide a waveguide fiber that is endlessly single mode. Alternative embodiments include fibers containing dopants that enhance fiber photosensitivity or which provide stress-induced or asymmetric-refractive-index-induced birefringence in the waveguide fiber.
Abstract:
A first liquid (30) in a container (28) goes to a burner (14). Then a second liquid (34) in a second container (32) goes to the burner (14). The burner then makes soot which is deposited as silica (38) on a substrate (36).
Abstract:
A method of manufacturing an optical waveguide preform includes providing a first process gas atmosphere to a soot preform contained in a vessel. The first atmosphere is held in the vessel for a first reacting time sufficient to at least partially dope or dry the soot preform. The vessel is then at least partially refilled with a second doping or drying atmosphere. The second doping or drying atmosphere is held in the vessel for a second reacting time sufficient to further dope or dry the soot preform.
Abstract:
A burner manifold apparatus (10) for delivering reactants to a combustion site of a chemical vapor deposition process includes fluid inlets (32a, 32b), fluid outlets (49), and a plurality of fluid passages (50) extending therebetween. The fluid passages (50) converge toward each other from the fluid inlets to the fluid outlets. One embodiment includes a manifold base (12), a pressure plate (14), and a manifold burner mount (16) for mounting thereto a micromachined burner (58). The fluid passages (50) internal to the manifold base are configured to distribute symmetrically the fluid to the manifold burner mount. The fluid is then channeled through fluid passages in the manifold burner mount. The fluid passages converge, yet remain fluidly isolated from each other, and the fluid passages create a linear array for producing linear streams of fluid. Alternatively, the burner manifold apparatus may include a plurality of manifold elements in a stacked arrangement. In this alternative embodiment, the manifold elements are configured to produce a linear array of fluid passages at the top of the stack, increasing the number of fluid passages at each level of the stack closer to the top. As yet a further alternative, the burner manifold may be produced by extruding a particulate composite through a die to produce a manifold having fluid passages therein. This extruded manifold generally has a tapered section to which a burner may be mounted.
Abstract:
A dispersion compensating single mode optical waveguide fiber designed to change the wavelength window of operation of a link from 1301 nm to 1550 nm. The dispersion compensating waveguide fiber is characterized by a core glass region refractive index profile comprised of at least three segments (2, 4, 6, 8). The segment (2) on the waveguide center has a positive relative refractive index. At least one segment (4, 8), spaced apart from the waveguide centerline has a negative relative refractive index.
Abstract:
The present invention is directed to a method for making fused silica glass by introducing a liquid, preferably halide-free, silicon-containing compound (32) directly into the flame (23) of a burner (24), thereby forming amorphous soot (25). This soot is deposited on a surface (26) and consolidated into a body of fused silica glass. The invention also relates to an apparatus which includes a burner (24) which generates a flame (23); an injector (31) for supplying a compound (32) to the flame (23) to convert the compound to soot and a surface (26) on which the soot is deposited.