摘要:
A system, apparatus and method for three-dimensional scanning and digitization of the surface geometry of objects are claimed. The system comprises a hand-held apparatus that is auto-referenced. The system is auto-referenced since it does not need any positioning device to provide the 6 degree of freedom transformations that are necessary to integrate 3D measurements in a global coordinate system while the apparatus is manipulated to scan the surface. The system continuously calculates its own position and orientation from observation while scanning the surface geometry of an object. To do so, the system exploits a triangulation principle and integrates an apparatus that captures both surface points originating from the reflection of a projected laser pattern on an object's surface and 2D positioning features originating from the observation of target positioning features. Using the described system, it is possible to simultaneously build and match a 3D representation of the positioning features while accumulating the 3D surface points describing the surface geometry.
摘要:
A method for obtaining a refined pose for a 3D sensor for online 3D modeling of a surface geometry of an object, the pose encompassing six degrees of freedom (DOF) including three translation parameters and three orientation parameters, the method comprising: providing the 3D sensor, the 3D sensor being adapted to capture 3D point measurements of the surface of the object from a viewpoint; providing a geometry model of at least part of the surface; observing a portion of the surface of the object with the 3D sensor; measuring an initialization pose for the 3D sensor by at least one of positioning device pose measurement, predicted pose tracking and target observation; finding a best fit arrangement of the 3D point measurements in the geometry model using the initialization pose; generating the refined pose for the 3D sensor using the best fit arrangement.
摘要:
A method for preparing a spatial coded slide image in which a pattern of the spatial coded slide image is aligned along epipolar lines at an output of a projector in a system for 3D measurement, comprising: obtaining distortion vectors for projector coordinates, each vector representing a distortion from predicted coordinates caused by the projector; retrieving an ideal pattern image which is an ideal image of the spatial coded pattern aligned on ideal epipolar lines; creating a real slide image by, for each real pixel coordinates of the real slide image, retrieving a current distortion vector; removing distortion from the real pixel coordinates using the current distortion vector to obtain ideal pixel coordinates in the ideal pattern image; extracting a pixel value at the ideal pixel coordinates in the ideal pattern image; copying the pixel value at the real pixel coordinates in the real slide image.
摘要:
A system for obtaining three-dimensional information about a surface, the system comprising: a sensing device having: a pattern projector for providing a projected pattern on the surface; and a camera for acquiring a 2D image of the surface from a viewpoint, wherein at least one target of a set of reference targets and at least a portion of the projected pattern is apparent on the 2D image; a storage for calibration data; an image processor for extracting 2D image coordinates of surface points of the projected pattern and target contours from the 2D image; a 3D surface point calculator for calculating 3D coordinates of the surface points from the 2D image coordinates of the surface points; a 3D target calculator for calculating a 3D position and/or an actual orientation for the reference target.
摘要:
There are provided systems and methods for obtaining a three-dimensional surface geometric characteristic and/or texture characteristic of an object. A pattern is projected on a surface of said object. A basic 2D image of said object is acquired; a characteristic 2D image of said object is acquired; 2D surface points are extracted from said basic 2D image, from a reflection of said projected pattern on said object; a set of 3D surface points is calculated in a sensor coordinate system using said 2D surface points; and a set of 2D surface geometric/texture characteristics is extracted.