摘要:
A powder-metallurgy produced tool steel article of a hot worked, fully dense, consolidated mass of prealloyed particles of a tool steel alloy having a sulfur content within the range of 0.10 to 0.70 weight percent and a maximum sulfide size below about 15 microns.
摘要:
A powder-metallurgy produced high-speed steel article having a combination of high hardness and wear resistance, particularly at elevated temperatures. This combination of properties is achieved by the combination of W, Mo, V, and Co. The article is particularly suitable for use in the manufacture of gear cutting tools, such as hobs, and surface coatings.
摘要:
A powder-metallurgy alloy article having a good combination of wear resistance and corrosion resistance. The article is further characterized by an attainable minimum hardness after heat treatment of 60R c and a martensitic structure. The article is made from prealloyed particles of the composition, in percent by weight, carbon 2.5-5, manganese 0.2-1, phosphorus 0.10 maximum, sulfur 0.10 maximum, silicon 1 maximum, nickel 0.5 maximum, chromium 15-30, molybdenum 2-10, vanadium 6-11, nitrogen 0.15 maximum and balance, iron. The article has a fine, uniform distribution of MC and other carbide phases.
摘要:
A hot-worked, fully dense, wear resistant, vanadium-rich, powder metallurgy cold work tool steel article having improved impact toughness. This is achieved by controlling the amount, composition and size of the primary carbides and by insuring that substantially all the primary carbides remaining after hardening and tempering are MC-type vanadium-rich carbides. The article is produced by hot isostatic compacting of nitrogen atomized powder particles.
摘要:
A powder-metallurgy produced tool steel article of a hot worked, fully dense, consolidated mass of prealloyed particles of a tool steel alloy having a sulfur content within the range of 0.10 to 0.30 weight percent and a maximum sulfide size below about 15 microns.
摘要:
A hot-worked, fully dense, wear resistant, vanadium-rich, powder metallurgy cold work tool steel article having improved impact toughness. This is achieved by controlling the amount, composition and size of the primary carbides and by insuring that substantially all the primary carbides remaining after hardening and tempering are MC-type vanadium-rich carbides. The article is produced by hot isostatic compacting of nitrogen atomized powder particles.