摘要:
A method can include analyzing non-invasive electrical data for a region of interest (ROI) of a patient's anatomical structure to identify one or more zones within the ROI that contain at least one mechanism of distinct arrhythmogenic electrical activity. The method also includes analyzing invasive electrical data for a plurality of signals of interest at different spatial sites within each of the identified zones to determine intracardiac signal characteristics for the plurality of sites within each respective zone. The method also includes generating an output that integrates the at least one mechanism of distinct arrhythmogenic electrical activity for the one or more zones with intracardiac signal characteristics for the plurality of sites within each respective zone.
摘要:
Systems and methods are provided to detect and analyze arrhythmia drivers. In one example, a system can include a wave front analyzer programmed to compute wave front lines extending over a surface for each of the plurality of time samples based on phase information computed from electrical data at nodes distributed across the surface. A trajectory detector can be programmed to compute wave break points for each of the wave front lines and to determine a trajectory of at least one rotor core across the surface. A stability detector can be programmed to identify at least one stable rotor portion corresponding to subtrajectories of the determined trajectory.
摘要:
A method can include storing a plurality of data sets including values computed for each of a plurality of points for a given spatial region of tissue, the values in each of the data sets characterizing electrical information for each respective point of the plurality of points for a different time interval. The method can also include combining the values computed for each of a plurality of points in a first interval, corresponding to a first map, with the values for computed for each of the respective plurality of points in another interval and to normalize the combined values relative to a common scale. The method can also include generating a composite map for the given spatial region based on the combined values that are normalized.
摘要:
A method includes storing baseline data representing at least one local or global electrical characteristics for at least a portion of a region of interest (ROI) of a patient's anatomical structure. The baseline data is determined based on electrical measurement data obtained during at least one first measurement interval. The method also includes storing in memory other data representing the at least one local or global electrical characteristics for the at least a portion of the ROI based on electrical measurement data obtained during at least one subsequent measurement interval. The method also includes evaluating the baseline data relative to the other data to determine a change in the at least one local or global electrical characteristics. The method also includes generating an output based on the evaluating to provide an indication of progress or success associated with the applying the treatment.
摘要:
A method can determine one or more origins of focal activation. The method can include computing phase for the electrical signals at a plurality of nodes distributed across a geometric surface based on the electrical data across time. The method can determine whether or not a given candidate node of the plurality of nodes is a focal point based on the analyzing the computed phase and magnitude of the given candidate node. A graphical map can be generated to visualize focal points detected on the geometric surface.
摘要:
A method can include providing (302) at least one parameter to control a therapy that is applied to at least one internal anatomical structure of a patient. Electrical data can be obtained from the patient (304), including electrical data acquired via a plurality of sensors during each of a plurality of iterations of the therapy. The electrical data can be analyzed (306) for a respective value of the at least one parameter of the therapy at each of the plurality of iterations of the applied therapy to compute an indication of at least one function of the at least one internal anatomical structure of the patient at each respective iteration of the applied therapy. The computed indication can be stored in memory (308). At least one parameter of the therapy can be adjusted (310) for delivery in a subsequent one of the plurality of iterations based on the indication of the at least one function.