摘要:
An Orthogonal Time Frequency Space Modulation (OTFS) modulation scheme that maps data symbols, along with optional pilot symbols, using a symplectic-like transformation such as a 2D Fourier transform and optional scrambling operation, into a complex wave aggregate and be backward compatible with legacy OFDM systems, is described. This wave aggregate may be processed for transmission by selecting portions of the aggregate according to various time and frequency intervals. The output from this process can be used to modulate transmitted waveforms according to various time intervals over a plurality of narrow-band subcarriers, often by using mutually orthogonal subcarrier “tones” or carrier frequencies. The entire wave aggregate may be transmitted over various time intervals. At the receiver, an inverse of this process can be used to both characterize the data channel and to correct the received signals for channel distortions, thus receiving a clear form of the original data symbols.
摘要:
A system and method of operating an Internet of Things (IOT) device and an IOT manager device. The method includes determining, during operation of the IOT device in a low power mode, an orthonormal time-frequency shifting (OTFS) transmission waveform using two-dimensional (2D) channel state information relevant to a delay-Doppler channel domain. The method further includes transmitting, during operation of the IOT device in a high power mode, the OTFS transmission waveform. The process of determining the OTFS transmission waveform may include, for example, receiving, from the IOT manager device, the 2D channel state information and storing it within a memory of the IOT device. Alternatively, at least one OTFS pilot transmission may be received from the IOT manager device and the 2D channel state information determined using the OTFS pilot transmission.
摘要:
An Orthogonal Time Frequency Space Modulation (OTFS) modulation scheme achieving multiple access by multiplexing multiple signals at the transmitter-side performs allocation of transmission resources to a first signal and a second signal, combining and converting to a transmission format via OTFS modulation and transmitting the signal over a communication channel. At the receiver, multiplexed signals are recovered using orthogonality property of the basis functions used for the multiplexing at the transmitter.
摘要:
A method and system for multiple access in a system utilizing two-dimensional signal modulation. The method includes spreading data symbols arranged in a two-dimensional information domain onto sets of grid points respectively associated with different users in a time-frequency domain. The spreading is performed using two-dimensional basis functions uniquely associated with positions on a lattice in the information domain corresponding to the data symbols. A modulated signal is then generated using the sets of transformed symbols. The sets of grid points associated with the different users may be interleaved within the time-frequency domain or may form non-interleaved windows.
摘要:
A system and method of providing a modulated signal useable in a signal transmission system. The method includes transforming, perhaps with respect to both time and frequency, a data frame including a plurality of data elements into a transformed data matrix. The transformed data matrix includes a plurality of transformed data elements where each of the plurality of transformed data elements is based upon each of the plurality of data elements. The method further includes generating the modulated signal in accordance with the transformed data elements of the transformed data matrix.
摘要:
Method of wirelessly communicating data over a data channel and apparatus thereof, the method comprising: encoding an N×M two-dimensional array comprising a plurality of data symbols onto at least one symplectic analysis compatible manifold distributed over a column time axis of length T and row frequency axis of length F, thereby producing at least one information manifold; transforming the at least one information manifold according to a two-dimensional symplectic-like Fourier transform, thereby producing at least one two-dimensional Fourier transformed information manifold; and transmitting each of the at least one two-dimensional Fourier transformed information manifold by: over all frequencies and times of a two-dimensional Fourier transformed information manifold, selecting a transmitting time slice of duration proportional to Tµ, where µ= 1/N, and passing those frequencies in the two-dimensional Fourier transformed information manifold corresponding to the transmitting time slice through a bank of at least M different, non-overlapping, narrowband frequency filters, and transmitting resulting filtered waveforms as a plurality of at least M simultaneously transmitted mutually orthogonal waveforms, over different transmitted time intervals, until an entire two-dimensional Fourier transformed information manifold has been transmitted.
摘要:
An Orthogonal Time Frequency Space Modulation (OTFS) modulation scheme achieving multiple access by multiplexing multiple signals at the transmitter-side performs allocation of transmission resources to a first signal and a second signal, combining and converting to a transmission format via OTFS modulation and transmitting the signal over a communication channel. At the receiver, multiplexed signals are recovered using orthogonality property of the basis functions used for the multiplexing at the transmitter.
摘要:
Fiber, cable, and wireless data channels are typically impaired by reflectors and other imperfections, producing a channel state with echoes and frequency shifts in data waveforms. Here, methods of using OTFS pilot symbol waveform bursts to automatically produce a detailed 2D model of the channel state are presented. This 2D channel state can then be used to optimize data transmission. For wireless data channels, an even more detailed 2D model of channel state can be produced by using polarization and multiple antennas in the process. Once 2D channel states are known, the system turns imperfect data channels from a liability to an advantage by using channel imperfections to boost data transmission rates. The methods can be used to improve legacy data transmission modes in multiple types of media, and are particularly useful for producing new types of robust and high capacity wireless communications using non-legacy OTFS data transmission methods.