摘要:
Methods and means are provided for reducing expression of a nucleic acid of interest, thereby altering the phenotype of an organism, particularly a plant, by providing aberrant, preferably unpolyadenylated, target specific RNA to the nucleus of the host cell. Preferably, the unpolyadenylated, target-specific RNA is provided by expresssion of a chimeric DNA construct comprising a promoter, a DNA region encoding the target specific RNA, a self-splicing ribozyme and a DNA region involved in 3' end formation and polyadenylation.
摘要:
Methods and means are provided for reducing the phenotypic expression of a nucleic acid of interest in eucaryotic cells, particularly in plant cells, by introducing chimeric genes encoding sense and antisense RNA molecules directed towards the target nucleic acid, which are capable of forming a double stranded RNA region by base-pairing between the regions with the sense and antisense nucleotide sequence or by introducing the RNA molecules themselves. Preferably, the RNA molecules comprises simultaneously both sense and antisense nucleotide sequence.
摘要:
Methods and means are provided for reducing the phenotypic expression of a nucleic acid of interest in eukaryotic cells, particularly plant cells, by introducing a chimeric RNA molecule comprising at least one RNA region with a nucleotide sequence comprising i. a sense nucleotide sequence of at least 15 consecutive nucleotides having 100% sequence identity with at least part of the nucleotide sequence of the nucleic acid of interest; and ii. an antisense nucleotide sequence including at least 15 consecutive nucleotides, having about 100% sequence identity with the complement of said at least 15 consecutive nucleotides of said sense nucleotide sequence; wherein said RNA region is capable of forming an artificial hairpin RNA structure with a double stranded RNA stem by base-pairing between the regions with sense and antisense nucleotide sequence such that said at least 15 consecutive nucleotides of the sense sequence basepair with said at least 15 consecutive nucleotides of the antisense sequence, wherein said nucleic acid of interest is a gene integrated into the genome of said eukaryotic cell, wherein said RNA molecule is produced by transcription of a chimeric gene.
摘要:
Methods and means are provided for reducing the phenotypic expression of a nucleic acid of interest in eukaryotic cells, particularly plant cells, by introducing a chimeric RNA molecule comprising at least one RNA region with a nucleotide sequence comprising i. a sense nucleotide sequence of at least 15 consecutive nucleotides having 100% sequence identity with at least part of the nucleotide sequence of the nucleic acid of interest; and ii. an antisense nucleotide sequence including at least 15 consecutive nucleotides, having about 100% sequence identity with the complement of said at least 15 consecutive nucleotides of said sense nucleotide sequence; wherein said RNA region is capable of forming an artificial hairpin RNA structure with a double stranded RNA stem by base-pairing between the regions with sense and antisense nucleotide sequence such that said at least 15 consecutive nucleotides of the sense sequence basepair with said at least 15 consecutive nucleotides of the antisense sequence, wherein said nucleic acid of interest is a gene integrated into the genome of said eukaryotic cell, wherein said RNA molecule is produced by transcription of a chimeric gene.
摘要:
Methods and means are provided for reducing the phenotypic expression of a nucleic acid of interest in eucaryotic cells, particularly in plant cells, by introducing chimeric genes encoding sense and antisense RNA molecules directed towards the target nucleic acid, which are capable of forming a double stranded RNA region by base-pairing between the regions with the sense and antisense nucleotide sequence or by introducing the RNA molecules themselves. Preferably, the RNA molecules comprises simultaneously both sense and antisense nucleotide sequence.
摘要:
Methods and means are provided for reducing expression of a nucleic acid of interest, thereby altering the phenotype of an organism, particularly a plant, by providing aberrant, preferably unpolyadenylated, target specific RNA to the nucleus of the host cell. Preferably, the unpolyadenylated, target-specific RNA is provided by expresssion of a chimeric DNA construct comprising a promoter, a DNA region encoding the target specific RNA, a self-splicing ribozyme and a DNA region involved in 3' end formation and polyadenylation.
摘要:
Provided are methods and means to obtain improved gene silencing of target nucleic acids whereby at least two inhibitory RNA molecules are provided which are targeted to the same nucleic acid, but which are processed into short interfering RNA molecules through different processing pathways. Also provided are methods and means to obtain improved gene silencing of target nucleic acids whereby at least two inhibitory RNA molecules are provided which are targeted to different nucleic acids, but which are processed into short interfering RNA molecules through different processing pathways.
摘要:
Provided are methods and means to obtain improved gene silencing of target nucleic acids whereby at least two inhibitory RNA molecules are provided which are targeted to the same nucleic acid, but which are processed into short interfering RNA molecules through different processing pathways. Also provided are methods and means to obtain improved gene silencing of target nucleic acids whereby at least two inhibitory RNA molecules are provided which are targeted to different nucleic acids, but which are processed into short interfering RNA molecules through different processing pathways.
摘要:
Methods and means are provided to modulate gene silencing in eukaryotes through the alteration of the functional level of particular DICER or DICER like proteins. Also provided are methods and means to modulate post-transcriptional gene silencing in eukaryotes through the alteration of the functional level of proteins involved in transcriptional silencing of the silencing RNA encoding genes.