Abstract:
The present invention is directed to recombinant thraustochytrids that grow on sucrose and cell cultures comprising the recombinant thraustochytrids as well as methods of producing cell cultures, biomasses, microbial oils, compositions, and biofuels using the recombinant thraustochytrids.
Abstract:
The present invention discloses isolated polynucleotide encoding enzymes, derived from the fungus Macrophomina phaseolina (“M. phaseolina”), responsible for degrading pectin, and it comprises and/or consists of nucleotide sequences set forth in SEQ ID Nos. 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59, 62, 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58 and 61, or the complement of such sequences. The present invention also relates to isolated polypeptide encoded by the polynucleotide sequences set forth in SEQ ID Nos. 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60 and 63; a recombinant gene construct comprising the polynucleotide; a transformant and a transgenic fungus comprising the recombinant gene construct, with or having enhanced production of pectin degrading enzyme. The polypeptide of the invention can be used for, amongst other things, manufactured fruit juice, textile products, pulp and paper, coffee, tea and oil extraction and pectic waste water treatment.
Abstract:
The present invention relates to a recombinant microorganism comprising one or more nucleotide sequence(s) encoding: a polypeptide having ent-copalyl pyrophosphate synthase activity; a polypeptide having ent-Kaurene synthase activity; a polypeptide having ent-Kaurene oxidase activity; and a polypeptide having kaurenoic acid 13-hydroxylase activity, whereby expression of the nucleotide sequence(s) confer(s) on the microorganism the ability to produce at least steviol. The recombinant microorganism may also be capable of expressing one or more UDP-glucosyltransferases such that the microorganism is capable of producing one or more steviol glycosides.
Abstract:
Described are compositions and methods relating to variant filamentous fungi having altered growth characteristics. Such variants are well-suited for growth in submerged cultures, e.g., for the large-scale production of enzymes and other proteins for commercial applications.
Abstract:
Provided are isolated polypeptides having endoglucanase activity, catalytic domains, cellulose binding domains and polynucleotides encoding the polypeptides, catalytic domains or cellulose binding domains. Also provided are nucleic acid constructs, vectors and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides catalytic domains or cellulose binding domains.
Abstract:
The disclosure provides thermostable enzymes isolated from Caldicellulosiruptor bescii and fragments thereof useful for the degradation of cellulose and/or hemicellulose, including thermostable cellulases and hemicellulases. The disclosure further provides nucleic acids encoding the thermostable enzymes of the disclosure. The disclosure also provides methods for the conversion of cellulose and hemicellulose into fermentable sugars using thermostable enzymes of the disclosure. The disclosure also provides enzyme cocktails containing multiple enzymes disclosed herein. The enzymes can be used to release sugars present in cellulose or hemicellulose for subsequent fermentation to produce value-added products.
Abstract:
The present invention relates to a polypeptide associated with the biosynthesis of 1-deoxynojirimycin which is a substance that inhibits α-glucosidase activity, to a polynucleotide coding therefor, to a vector comprising the polynucleotide, to a transformant comprising the vector, and to a method in which the transformant is used in order to produce either a polypeptide associated with the synthesis of 1-deoxynojirimycin or 1-deoxynojirimycin. The polynucleotide of the present invention can be used in the volume production of 1-deoxynojirimycin, or can be used in studies searching for novel 1-deoxynojirimycin derivatives using recombinant technology, and hence is useful in developing pathogenic virus inhibitors and hypoglycemic agents for diabetic patients.
Abstract:
The present invention is directed to recombinant thraustochytrids that grow on sucrose and cell cultures comprising the recombinant thraustochytrids as well as methods of producing cell cultures, biomasses, microbial oils, compositions, and biofuels using the recombinant thraustochytrids.