摘要:
A lighting device is provided that includes a light source package including a diode disposed in a housing and emitting light at an emission point within the housing. The lighting device also has an optical fiber extending through an opening in the housing and having a terminal end optically aligned on an optical axis with the diode to within a distance of less than 1.0 millimeter from the emission point, wherein the fiber emits light via a light diffusing fiber.
摘要:
The present invention relates generally to semiconductor lasers and laser scanning systems and, more particularly, to schemes for controlling wavelength in semiconductor lasers. According to one embodiment of the present invention, a method of minimizing laser wavelength variations in a semiconductor laser is provided. According to the method, one or more of the laser drive currents is configured to comprise a drive portion A and a wavelength recovery portion B. The wavelength recovery portion of the drive current comprises a recovery amplitude IR that is distinct from the drive amplitude ID and a recovery duration tR that is less than the drive duration tD. The recovery amplitute IR and duration tR are sufficient to recover carrier density distribution distorted by gain compression effects prior to recovery. Additional embodiments are disclosed and claimed.
摘要:
Particular embodiments of the present invention relate generally to semiconductor lasers and laser scanning systems and, more particularly, to schemes for controlling semiconductor lasers. According to one embodiment of the present invention, a laser is configured for optical emission of encoded data. At least one parameter of the optical emission is a function of a drive current IGAIN injected into the gain section (16) of the semiconductor laser (10) and one or more additional drive currents IPHASE, IDBR. Mode selection in the semiconductor laser is altered by perturbing at least one of the additional drive currents IPHASE, IDBR witn a perturbation signal IPTRB to alter mode selection in the semiconductor laser (10) such that a plurality of different emission modes are selected in the semiconductor laser (10) over a target emission period. In this manner, patterned variations in the wavelength or intensity profile of the laser can be disrupted to disguise patterned flaws that would otherwise be readily noticeable in the output of the laser.
摘要:
Methods of controlling semiconductor lasers are provided where the semiconductor laser generates a wavelength-modulated output beam λMOD that is directed towards the input face of a wavelength conversion device. The intensity of a wavelength-converted output λCONV of the device is monitored as the output beam of the laser is modulated and as the position of the modulated output beam λMOD on the input face of the wavelength conversion device is varied. A maximum value of the monitored intensity is correlated with optimum coordinates representing the position of the modulated output beam λMOD on the input face of the wavelength conversion device. The optical package is operated in the data projection mode by directing an intensity-modulated laser beam from the semiconductor laser to the wavelength conversion device using the optimum positional coordinates. Additional embodiments are disclosed and claimed. Laser controllers and projections systems are also provided.
摘要:
Methods and apparatus for combining, adding, and/or dropping channels in optical communication systems that utilize thin film filters without the creation of deadbands, using fiber Bragg gratings (316,322) and additional thin film optical filters, are described. According to one aspect of the invention, an optical filter (318) is used to drop a wavelength (328) range from an optical signal (312). Prior to the optical signal entering the optical filter, one or more fiber Bragg gratings and an optical circulator (310, 324) are used reflects a portion of the communications spectrum which would normally lie with the deadband region of the optical filter. According to another aspect of the present invention, an optical filter (320) is used to combine a first optical signal and a second optical signal to form a combined optical signal. Neither the first optical signal nor the second optical signal includes channels within a deadband region of the optical filter. One or more fiber Bragg gratings and an optical circulator or a coupler are used to add a third optical signal to the combined optical signal. The third optical signal includes signal wavelengths within the deadband region of the optical filter.