摘要:
A method of forming an optical element is provided. The method includes producing silica-based soot particles using chemical vapor deposition, the silica-based soot particles having an average particle size of between about 0.05 µm and 0.25 µm The method also includes forming a soot compact from the silica-based soot particles and doping the soot compact with a halogen in a closed system by contacting the silica-based soot compact with a halogen containing gas in the closed system at a temperature of less than about 1200°C. The method further includes flowing ore of the halogen dopant gas into the closed system to maintain the pressure. The total pressure in the closed system is between 2.0 and 30 atm.
摘要:
An optical fibre and its manufacture are provided. The optical fibre includes an optical waveguide and a cured primary coating layer surrounding the optical waveguide. The optical fibre further includes a cured secondary coating layer surrounding the cured primary coating layer. The optical fibre further includes a cured tertiary ink coating layer surrounding the cured secondary coating layer. The cured tertiary ink coating layer has a glass transition temperature (T g-ink ) of greater than or equal to 75 °C.
摘要:
According to some embodiments a method of processing an optical fiber comprises the steps of: (i) drawing the fiber at a drawing rate of at least 30 m/sec; and (ii) cooling the drawn fiber in a gas at an average cooling rate less than 5000° C./s, such that said cooling reduces the temperature of the fiber from an entering temperature in the range between 1500° C. and 1700° C. to another temperature in the range between 1200° C. and 1400° C., the gas being at a temperature between 800° C. and 1500° C.; and the thermal conductivity κ of the gas being not greater than 1.5×10−4 cal/cm-s-K for at least one temperature within a range of 800° C. to 1500° C. at one atm (atmosphere) pressure absolute.
摘要:
An optical fiber having both low macrobend loss and low microbend loss. The fiber has a central core region, a first (inner) cladding region surrounding the central core region and having an outer radius r2>16 microns and relative refractive index Δ2, and a second (outer) cladding region surrounding the first cladding region having relative refractive index, Δ3, wherein Δ1>Δ3>Δ2. The difference between Δ3 and Δ2 is greater than 0.12 percent. The fiber exhibits a 22 m cable cutoff less than or equal to 1260 nm, and r1/r2 is greater or equal to 0.24 and bend loss at 1550 nm for a 15 mm diameter mandrel of less than 0.5 dB/turn.
摘要:
An optical fiber with large effective area, low bending loss and low attenuation. The optical fiber includes a core, an inner cladding region, and an outer cladding region. The core region includes a spatially uniform updopant to minimize low Rayleigh scattering and a relative refractive index and radius configured to provide large effective area. The inner cladding region features a large trench volume to minimize bending loss. The core may be doped with Cl and the inner cladding region may be doped with F.
摘要:
A single mode optical fiber having a core made from silica and less than or equal to about 11 weight % germania and having a maximum relative refractive index Δ1MAX. The optical fiber also has an inner cladding surrounding the core and having a minimum relative refractive index Δ2MIN, a first outer cladding surrounding the inner cladding and a second outer cladding surrounding the first outer cladding. The viscosity at 1650° C. of the second outer cladding minus the viscosity at 1650° C. of the first outer cladding is greater than 0.1e7 Poise, and Δ1MAX>Δ2MIN. The single mode optical fiber may also have an outer cladding surrounding the inner cladding made from silica or SiON. The first outer cladding has a maximum relative refractive index Δ3MAX, and Δ3MAX>Δ2MIN.