摘要:
A medical device for treating tissue includes a tissue-contacting surface and a solid state heating element that is thermally coupled to the tissue-contacting surface. The solid state heating element is configured to generate heat to thermally treat tissue.
摘要:
A system for monitoring the target tissue during a tissue sealing procedure is disclosed. The system includes a forceps having opposing jaw members movable from a first position in spaced relation relative to one another to at least one subsequent position wherein the jaw members cooperate to grasp the tissue therebetween. Each of the jaw members includes a sealing member. The system also includes a generator coupled to the sealing members so that therapeutic energy is delivered to the target tissue. The generator includes an output stage configured to generate therapeutic energy and a microwave detector configured to measure reflected and/or absorbed microwave signals. The monitored microwave signals may be either the therapeutic energy signal or a separate non-therapeutic microwave monitoring signal. The generator also includes a controller operatively coupled to the microwave detector. The controller is configured to determine the state of the tissue based on the reflected and/or absorbed microwave signals and to control the delivery of therapeutic energy from the generator to tissue based on the microwave measurements.
摘要:
An end effector assembly for an electrosurgical device includes first and second jaw members movable between spaced-apart and approximated positions. The jaw members define opposed tissue-contacting surfaces that cooperate to define a tissue grasping area within which tissue is grasped when the jaw members are moved to the approximated position. At least one of the jaw members includes an interior electrode and at least one of the jaw members includes first and second exterior electrodes. The interior and exterior electrodes are configured to conduct energy through tissue grasped within the tissue grasping area to seal tissue. The interior electrodes are disposed interiorly of outer bounds of the tissue grasping area, while the exterior electrodes are disposed exteriorly. As a result, upon conduction of energy through tissue grasped within the tissue grasping area, tissue disposed adjacent the exterior electrodes is boiled before boiling of tissue disposed adjacent the interior electrodes.
摘要:
An end effector assembly for an electrosurgical device includes first and second jaw members movable between spaced-apart and approximated positions. The jaw members define opposed tissue-contacting surfaces that cooperate to define a tissue grasping area within which tissue is grasped when the jaw members are moved to the approximated position. At least one of the jaw members includes an interior electrode and at least one of the jaw members includes first and second exterior electrodes. The interior and exterior electrodes are configured to conduct energy through tissue grasped within the tissue grasping area to seal tissue. The interior electrodes are disposed interiorly of outer bounds of the tissue grasping area, while the exterior electrodes are disposed exteriorly. As a result, upon conduction of energy through tissue grasped within the tissue grasping area, tissue disposed adjacent the exterior electrodes is boiled before boiling of tissue disposed adjacent the interior electrodes.
摘要:
The systems and methods of the present disclosure detect arcing patterns or impedance changes and adjust the level of electrosurgical energy provided to tissue based on the detected arcing patterns or impedance changes. In embodiments, the drag force imposed on the electrode or blade of an electrosurgical instrument may be controlled by adjusting the level of electrosurgical energy based on the detected arcing patterns or impedance changes. The arcing patterns or impedance changes may be detected by sensing voltage and/or current waveforms of the electrosurgical energy and analyzing the sensed voltage and/or current waveforms. The current and/or voltage waveform analysis may involve calculating impedance based on the sensed voltage and current waveforms and calculating changes in impedance over time. The waveform analysis may involve detecting harmonic distortion using FFTs, DFTs, Goertzel filters, polyphase demodulation techniques, and/or bandpass filters. The waveform analysis may involve determining a normalized difference or the average phase difference between the voltage and current waveforms.
摘要:
A medical device for treating tissue includes a tissue-contacting surface and a solid state heating element that is thermally coupled to the tissue-contacting surface. The solid state heating element is configured to generate heat to thermally treat tissue.
摘要:
A medical device includes an energy-generating unit configured to produce energy for conduction through tissue to treat tissue. Waste heat produced by the energy-generating unit during energy production is conducted to tissue to facilitate treating tissue.