摘要:
The invention provides a self-expandable apparatus for removal of a thrombus in a blood vessel, comprising: a push or guide wire; a mesh structure of interconnected struts, the mesh structure comprising a first plurality of mesh cells, the mesh structure having a proximal end (3) and a distal end (2) wherein said distal end (2) of the mesh structure is configured to engage at least a portion of the thrombus to form a removable, integrated apparatus-thrombus mass; a tapering portion comprising a second plurality of mesh cells, the tapering portion disposed toward the proximal end (3) of the mesh structure; and a connection point (9), at which the tapering portion converges, located at a proximal end (3) of the tapering portion, the tapering portion permanently attached to the push or guide wire (7) at or adjacent to the connection point (9); wherein the apparatus is pre-formed to assume a volume-enlarged form and, in the volume-enlarged form, takes the form of a longitudinally open tube tapering toward the connection point (9).
摘要:
The invention provides a self-expandable apparatus for removal of a thrombus in a blood vessel, comprising: a push or guide wire; a mesh structure of interconnected struts, the mesh structure comprising a first plurality of mesh cells, the mesh structure having a proximal end (3) and a distal end (2) wherein said distal end (2) of the mesh structure is configured to engage at least a portion of the thrombus to form a removable, integrated apparatus-thrombus mass; a tapering portion comprising a second plurality of mesh cells, the tapering portion disposed toward the proximal end (3) of the mesh structure; and a connection point (9), at which the tapering portion converges, located at a proximal end (3) of the tapering portion, the tapering portion permanently attached to the push or guide wire (7) at or adjacent to the connection point (9); wherein the apparatus is pre-formed to assume a volume-enlarged form and, in the volume-enlarged form, takes the form of a longitudinally open tube tapering toward the connection point (9).
摘要:
Described herein are vascular remodeling devices that include a proximal section, an intermediate section, and a distal section. During deployment, the proximal section can expand from a compressed delivery state to an expanded state and anchors the device in an afferent vessel of a bifurcation. The distal section expands from the compressed delivery state to an expanded state that may be substantially planar, approximately semi-spherical, umbrella shaped, or reverse umbrella shaped. The distal section is positioned in a bifurcation junction across the neck of an aneurysm or within an aneurysm. The intermediate section allows perfusion to efferent vessels. Before or after the device is in position, embolic material may be used to treat the aneurysm. The distal section can act as a scaffolding to prevent herniation of the embolic material. The device can be used for clot retrieval with integral distal embolic protection.
摘要:
Vascular remodeling devices can include a proximal section, an intermediate section, and a distal section. During deployment, the proximal section can expand from a compressed delivery state to an expanded state and anchor the device in an afferent vessel of a bifurcation. The distal section expands from the compressed delivery state to an expanded state that may be substantially planar, approximately semi-spherical, umbrella shaped, or reverse umbrella shaped. The distal section is positioned in a bifurcation junction across the neck of an aneurysm or within an aneurysm. The intermediate section allows perfusion to efferent vessels. Before or after the device is in position, embolic material may be used to treat the aneurysm. The distal section can act as a scaffolding to prevent herniation of the embolic material. The device can be used for clot retrieval with integral distal embolic protection.
摘要:
A medical device for blood flow restoration and/or for use as an implantable member m a human vessel includes a self-expanding member, a guidewire, and a connection mechanism. The self-expanding member includes a plurality of cells and filaments having specific ranges of thicknesses, widths, and heights. The self-expanding member can take on a volume-reduced coiled form with overlapped edges, and can generate optimal radial forces against a vessel wall and/or thrombus when deployed and expanded.