摘要:
Described herein are vascular remodeling devices that include a proximal section, an intermediate section, and a distal section. During deployment, the proximal section can expand from a compressed delivery state to an expanded state and anchors the device in an afferent vessel of a bifurcation. The distal section expands from the compressed delivery state to an expanded state that may be substantially planar, approximately semi-spherical, umbrella shaped, or reverse umbrella shaped. The distal section is positioned in a bifurcation junction across the neck of an aneurysm or within an aneurysm. The intermediate section allows perfusion to efferent vessels. Before or after the device is in position, embolic material may be used to treat the aneurysm. The distal section can act as a scaffolding to prevent herniation of the embolic material. The device can be used for clot retrieval with integral distal embolic protection.
摘要:
A stent assembly, comprising: a. a stent jacket, comprising an expansible mesh structure, having a retracted state and a deployed state, and further wherein in the deployed state, the expansible mesh structure defines apertures, and the expansible mesh structure is formed of fibers of a diameter between about 5 micrometers and about 25 micrometers, the diameter having a property of forming a substantially stable layer of endothelial cells, covering the fibers, thus reducing platelet aggregation; and b. an expansible stent, operatively associated with the stent jacket, the stent jacket being located on the exterior of the expansible stent.
摘要:
A stent with varying porosity is described. The stent can be comprised of multiple stents attached together. A braided stent may have selected regions of increased thickness. The stent may be comprised of wires that are welded together at their ends in order to minimize vessel trauma. The stent may comprise a helically wound radiopaque wire wound through the stent.
摘要:
An intravascular device for treating a cerebral aneurysm, the device comprising an externally controllable expandable member, the expandable member comprising a plurality of wires that define walls of the expandable member; wherein in a relaxed state of the expandable member the walls comprise at least a first wall portion in which openings defined between the wires are small enough to prevent coils positioned within the aneurysm from exiting the aneurysm, the first wall portion comprising an axial length at least as long as a neck of the aneurysm; and at least a second wall portion in which openings defined between the wires are large enough to allow blood flow through; the second wall portion axially aligned relative to the first wall portion. In some embodiments, openings of the first wall portion are small enough to reduce radial blood flow to and/or from the aneurysm.
摘要:
Coating methods and related devices are provided. Such devices can include stents. For example, the device can comprise a sidewall and a plurality of pores in the sidewall that are sized to inhibit flow of blood through the sidewall into an aneurysm to a degree sufficient to lead to thrombosis and healing of the aneurysm when the tubular member is positioned in a blood vessel and adjacent to the aneurysm. The device can also comprise an anti-thrombogenic coating distributed over at least a portion of the device such that the pores are substantially free of webs formed by the coating.
摘要:
Devices and methods for treatment of a patient's vasculature with some embodiments configured for delivery with a microcatheter for treatment of the cerebral vasculature of a patient. Some embodiments include thin permeable membranes configured to occlude blood flow therethrough.
摘要:
A method of manufacturing three-dimensional thin-film nitinol (NiTi) devices includes: depositing multiple layers of nitinol and sacrificial material on a substrate. A three-dimensional thin-film nitinol device may include a first layer of nitinol and a second layer of nitinol bonded to the first layer at an area masked and not covered by the sacrificial material during deposition of the second layer.