摘要:
A radiation sensitive imaging element is described comprising a support bearing one or more hydrophilic colloid layers, wherein a photographically useful compound is incorporated into at least one hydrophilic colloid layer in the form of a self-assembled composition comprising a substantially homogeneous and ordered array of the photographically useful compound and silver and halide atoms, wherein the average minimum distance from each Ag atom in the composition to an atom of the photographically useful compound in the composition is less than 50 Å. In a particular embodiment, the self-assembled composition is of the general unit cell formula
Ag a X b (PUC*) c nH 2 O
where X represents halogen atoms selected from Cl, Br, and I or any combination thereof, and PUC* is a photographically useful compound containing at least one positively charged onium ion group; and wherein a is an integer from 1- 10 and b is an integer from 2 - 18, with the proviso b is greater than a, and the silver and halide atoms form silver halide sublattice structures having a net negative charge; c is an integer such that the onium ion group containing photographically useful compound forms a positively-charged sublattice which stabilizes the negatively charged silver halide sublattice, wherein charge neutrality for the composition is upheld; and n is any number from 0 to 10. The invention provides novel materials and a method of incorporating active chemistry compounds such as developers or development inhibitors directly into a photographic imaging element. The invention further provide materials, and a method for preparing materials, comprising silver halide co-crystallized with photographic useful compound molecules thereby creating a unique crystal lattice. The invention described herein provides materials in which active chemistry and silver halide are present together in an ordered array, or crystal lattice, separated by distances measured on the atomic scale (i.e., in angstroms (Å), where 1 Å = 10 -4 µm).