摘要:
An olefin polymerization process in which at least two introductions of hydrogen are made during the olefin polymerization reaction. Suitable catalysts include metallocenes of the general formula (Cp) m TiX n , wherein Cp is a substituted or unsubstituted cyclopentadienyl ring, X is a halogen, m=1-2, n=2-3, and wherein m+n=4 , and conventional Ziegler-Natta catalysts blended with or modified by such metallocenes.
摘要:
This invention relates to a process for making a catalyst in which a metallocene is included in the synthesis of a Ziegler-Natta catalyst and a process for using the catalyst in the polymerization of olefins, specifically, propylene, to produce a polymer product with broad polydisperisty.
摘要:
A method of forming a polyolefin catalyst component which includes chlorinating magnesium ethoxide, and then treating the solid first with an electron donor, particularly diethyl phthalate or di-isobutyl phthalate, at a relatively low donor level, and then second with a titanating agent, such as titanium tetrachloride, to produce a catalyst component. The catalyst component is activated with an aluminum alkyl cocatalyst. An organosilane compound can be added as a stereoselectivity control agent. The activated catalyst is used in the polymerization of olefins, particularly propylene, to obtain a polymer product with a broad molecular weight distribution.
摘要:
This invention concerns a catalyst system comprising at least one homogeneous catalyst and at least one heterogeneous catalyst, specifically, a metallocene catalyst and a conventional Ziegler-Natta catalyst, respectively. This invention is useful in the polymerization of any polymer in which separate polymerizations with a homogeneous catalyst and with a heterogeneous catalyst are possible, but preferably, polymerization of olefins, more preferably, a-olefins, and, most preferably, propylene. This invention provides a catalyst system which facilitates use of a homogeneous catalyst but eliminates the disadvantages of such a system. This invention produces a polymer with molecular weight distribution (MWD) as broad or broader than the MWD of the heterogeneous catalyst alone. Hydrogen can be used to control molecular weight distribution of a polymer produced with this invention.
摘要:
The present invention provides a process for control of desired properties in the polymer product. The catalyst system used in the process includes a supported metallocene catalyst precursor in combination with an oxyorganoaluminum. The process can be applied to the co-polymerization of propylene and ethylene. The randomness of the ethylene incorporation of the co-polymer product is increased as the amount of ethylene in the feed is increased. The amount of ethylene in the feed is up to 6 wt% with a resulting amount of ethylene incorporated into the copolymer product up to 4 mole %.
摘要:
A method of preparing ultra high melt flow polypropylene having reduced xylene solubles is provided. The method utilizes a diether internal donor-containing Ziegler-Natta catalyst system to polymerize propylene. The polypropylene produced is characterized by having a melt flow of at least about 300 g/10 min and a xylene solubles of not more than about 3.5% and no peroxide residue. The catalyst system may also include an internal phthalate donor. The method of the invention allows the amount of external donors to be reduced, or even eliminated, without significant increases in xylene solubles.
摘要:
Process of preparing silica-supported catalysts. A support material comprising silica particles impregnated with an alumoxane co-catalyst with at least one-half of the co-catalyst disposed within the internal pore volume of the silica is contacted with a dispersion of a metallocene catalyst in an aromatic solvent. The dispersion and support are mixed at a temperature of about 10°C or less to enable the metallocene to become reactively supported on and impregnated within the alumoxane-impregnated silica particles. The supported catalyst is recovered from the aromatic solvent and washed with an aromatic hydrocarbon and then a paraffinic hydrocarbon at a temperature of about 10°C or less. The washed catalyst is dispersed in a viscous mineral oil.