摘要:
The invention relates to a wear-resistant, highly stressed and low-friction boundary coating construction for titanium or the alloys thereof which can be advantageously used in order to protect human implants. According to the inventive boundary coating construction, the boundary coating is comprised of a 200 to 400 nm thick DLC coating (4), a 5 to 50 nm thick intermediate coating (3) and a 0.3 to 2.0 mm thick gas alloyed coating (2), said gas alloyed coating having a hardness between 600 HV0,1 and 1,400 HV0,1. The inventive boundary coating construction is produced by firstly melting the surface of the member which is to be protected. The surface is then gas alloyed and cleaned in an N2/Ar atmosphere. Subsequently, the intermediate coating is first deposited followed by a depositing of the hard amorphous carbon coating by means of the laser-induced, pulsed vacuum arc (laser-arc) method.
摘要:
The invention relates to the hardening of the surface layer of parts of machines, plants and apparatuses and also tools. Objects for which the application is possible and advantageous are components which are subjected to severe fatigue or wear stresses and are composed of hardenable steels and have a complicated shape and whose surface has to be hardened selectively on the functional surfaces or whose functional surface has a multidimensional shape. The process for hardening the surface layer of components having a complicated shape is carried out by means of a plurality of energy input zones. According to the invention, it is characterized in that the energy input zones are conducted on different curved parts separately in space and time and by means of cooperatively working transport systems so that superposition of the individual temperature fields forms a uniform temperature field which completely covers the functional surface of the component and within which each surface element of the later hardening zone of the component attains the selected austenite formation temperature interval ΔTa at least once and the time interval Δt between the maximum temperatures Tmaxn of the individual temperature fields is from 3.1 to 3.n smaller than the time ΔtmS which is required to go below the martensite start temperature MS during the cooling phase. The apparatus by means of which the process of the invention can be carried out is, according to the invention, characterized in that the energy configuring units are connected to one or more energy sources for optical or electromagnetic radiation and are each fixed to separate but cooperatively operating transport systems.
摘要:
The invention concerns a wear-resistant edge layer structure for titanium and its alloys which can be subjected to high loads and has a low coefficient of friction and can be used to particular advantage for protecting human implants. In the edge layer structure according to the invention the edge layer comprises a 200 to 400 nm-thick hard-amorphous carbon layer (4), a 50 to 200 nm-thick intermediate layer (3) and a 0.3 to 2.0 mm-thick gas-alloyed layer (2) whose hardness is between 600 and 1400 Vickers hardness0.1. In order to produce the edge layer structure according to the invention, the surface of the component to be protected is first melted, then gas-alloyed in an N2/Ar atmosphere and cleaned. Only then are the intermediate layer and then the hard-amorphous carbon layer deposited by means of the laser-controlled pulsed vacuum arc process (laser arc process).
摘要:
The invention relates to reflective optical elements for dynamically deflecting a laser beam and a production method for said reflective elements. The aim of the invention is to provide reflective optical elements for dynamically deflecting laser beams that can be produced more economically and are flexible in the geometric design thereof such that the reflective optical elements can achieve improved characteristics in dynamic operation. For the reflective optical element according to the invention, a plate-shaped reflective element is connected to a surface of a main body in a bonded and planar manner by means of a solder connection.