摘要:
A lighting apparatus comprising a semiconductor light source and a color stable Mn 4+ doped phosphor of formula K 2 SiF 6 :Mn 4+ , wherein % intensity loss of the phosphor after exposure to light flux of at least 80 w/cm 2 at a temperature of at least 50ºC for at least 21 hours is ≤ 4%.
摘要:
A process for synthesizing a color stable Mn4+ doped phosphor includes contacting a precursor of formula I, in gaseous form at an elevated temperature with a fluorine-containing oxidizing agent to form the color stable Mn4+ doped phosphor Ax[MFy]:Mn4+ I wherein A is Li, Na, K, Rb, Cs, NR4 or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Hf, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; R is H, lower alkyl, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; and y is 5, 6 or 7.
摘要:
A scintillator composition of formula AD(BO3)X2:E, an apparatus including this scintillator composition, and method for operating the apparatus are disclosed. In the scintillator formula, A may be barium, calcium, strontium, lanthanum, or a combination of any of barium, calcium, strontium, and lanthanum. D is aluminum, silicon, gallium, magnesium, or a combination of any of aluminum, silicon, gallium, and magnesium. X may be fluorine, chlorine or a combination of fluorine and chlorine. E includes cerium or a combination of cerium and lithium. The apparatus and methods disclosed herein may be used for detecting high energy radiation in a harsh environment.
摘要:
A process for synthesizing a manganese doped phosphor of formula I: Ax [MFy]:Mn4+ is presented. The process includes contacting a first solution with a second solution and a third solution in the presence of a plurality of inert particles. The first solution and the second solution include a composition of formula II: Ax[MnFy]. The third solution includes a source of M, where A is Li, Na, K, Rb, Cs, or combinations thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Hf, Y, La, Nb, Ta, Bi, Gd, or combinations thereof; x is an absolute value of a charge of the [MFy] ion; and y is 5, 6 or 7.
摘要:
A method for recovering at least one rare earth element from a phosphor is presented. The method includes a halogenation step (a) and a reduction step (b). The phosphor is first halogenated in a molten salt to convert at least one rare earth constituent contained therein to a soluble rare earth halide. Then, the rare earth halide in the molten salt can be reduced, to convert the rare earth halide to a rare earth element in its elemental state. A method for individually recovering multiple rare earth elements from a phosphor is also presented.
摘要:
An oxynitride phosphor is presented. The oxynitride phosphor has a formula: ApBqOrNs: R such that A is barium or a combination of barium with at least one of Li, Na, K, Y, Sc, Be, Mg, Ca, Sr, Ba, Zn, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, and Lu; B is silicon or a combination of silicon with at least one of Al, B, Ga, and Ge; R is europium or a combination of europium with at least one of Ce, Pr, Sm, Nd, Tb, Dy, Yb, Tm, Er, Ho, and Mn. p, q, r, s are numbers such that p is greater than about 2 and less than about 6, q is greater than about 8 and less than about 10, r is greater than about 0.1 and less than about 6, and s is greater than about 10 and less than about 15. The method of preparing the oxynitride phosphors and light emitting apparatus including the oxynitride phosphors are included.