摘要:
A server computer and a multitude of client computers form a network computing system that is scalable and adapted to continue to evaluate the performance characteristics of a number of genes generated using a software application running on the client computers. Each client computer continues to periodically receive data associated with the genes stored in its memory. Using this data, the client computers evaluate the performance characteristic of their genes by comparing a solution provided by the gene with the periodically received data associated with that gene. Accordingly, the performance characteristic of each gene may be updated and varied with each periodically received data. The performance characteristic of a gene defines its fitness. The genes may be virtual asset traders that recommend trading options, and the data associated with the genes may be historical trading data.
摘要:
A server computer and a multitude of client computers form a network computing system that is scalable and adapted to continue to evaluate the performance characteristics of a number of genes generated using a software application. Each client computer continues to periodically receive data associated with the stored genes stored in its memory. Using this data, the client computers evaluate the performance characteristic of their genes by comparing a solution provided by the gene with the periodically received data associated with that gene. Accordingly, the performance characteristic of each gene may be updated and varied with each periodically received data. The performance characteristic of a gene defines its fitness. The genes may be virtual asset traders that recommend trading options. The genes may be assigned initially to different classes to improve convergence but may later be decided to merge with genes of other classes to improve diversity.
摘要:
The cost of performing sophisticated software-based financial trend and pattern analysis is significantly reduced by distributing the processing power required to carry out the analysis and computational task across a large number of networked individual or cluster of computing nodes. To achieve this, the computational task is divided into a number of sub tasks. Each sub task is then executed on one of a number of processing devices to generate a multitude of solutions. The solutions are subsequently combined to generate a result for the computational task. The individuals controlling the processing devices are compensated for use of their associated processing devices. The algorithms are optionally enabled to evolve over time. Thereafter, one or more of the evolved algorithms is selected in accordance with a predefined condition.